A finite mixture mixed proportion regression model for classification problems in longitudinal voting data

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 4 vom: 21., Seite 871-888
1. Verfasser: da Paz, Rosineide (VerfasserIn)
Weitere Verfasser: Bazán, Jorge Luis, Lachos, Victor Hugo, Dey, Dipak
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian methods L-Logistic mixed model classification mixture model
LEADER 01000caa a22002652c 4500
001 NLM354314181
003 DE-627
005 20250304131519.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1998392  |2 doi 
028 5 2 |a pubmed25n1180.xml 
035 |a (DE-627)NLM354314181 
035 |a (NLM)36925909 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a da Paz, Rosineide  |e verfasserin  |4 aut 
245 1 2 |a A finite mixture mixed proportion regression model for classification problems in longitudinal voting data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Continuous clustered proportion data often arise in various areas of the social and political sciences where the response variable of interest is a proportion (or percentage). An example is the behavior of the proportion of voters favorable to a political party in municipalities (or cities) of a country over time. This behavior can be different depending on the region of the country, giving rise to groups (or clusters) with similar profiles. For this kind of data, we propose a finite mixture of a random effects regression model based on the L-Logistic distribution. A Markov chain Monte Carlo algorithm is tailored to obtain posterior distributions of the unknown quantities of interest through a Bayesian approach. To illustrate the proposed method, with emphasis on analysis of clusters, we analyze the proportion of votes for a political party in presidential elections in different municipalities observed over time, and then identify groups according to electoral behavior at different levels of favorable votes 
650 4 |a Journal Article 
650 4 |a Bayesian methods 
650 4 |a L-Logistic mixed model 
650 4 |a classification 
650 4 |a mixture model 
700 1 |a Bazán, Jorge Luis  |e verfasserin  |4 aut 
700 1 |a Lachos, Victor Hugo  |e verfasserin  |4 aut 
700 1 |a Dey, Dipak  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 4 vom: 21., Seite 871-888  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:4  |g day:21  |g pages:871-888 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1998392  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 4  |b 21  |h 871-888