Functional distributional clustering using spatio-temporal data

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 4 vom: 21., Seite 909-926
1. Verfasser: Venkatasubramaniam, A (VerfasserIn)
Weitere Verfasser: Evers, L, Thakuriah, P, Ampountolas, K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62H11 62H30 62P30 Agglomerative hierarchical clustering distributional functional non-parametric spatial
LEADER 01000caa a22002652c 4500
001 NLM354314165
003 DE-627
005 20250304131519.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.2001443  |2 doi 
028 5 2 |a pubmed25n1180.xml 
035 |a (DE-627)NLM354314165 
035 |a (NLM)36925906 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Venkatasubramaniam, A  |e verfasserin  |4 aut 
245 1 0 |a Functional distributional clustering using spatio-temporal data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This paper presents a new method called the functional distributional clustering algorithm (FDCA) that seeks to identify spatially contiguous clusters and incorporate changes in temporal patterns across overcrowded networks. This method is motivated by a graph-based network composed of sensors arranged over space where recorded observations for each sensor represent a multi-modal distribution. The proposed method is fully non-parametric and generates clusters within an agglomerative hierarchical clustering approach based on a measure of distance that defines a cumulative distribution function over temporal changes for different locations in space. Traditional hierarchical clustering algorithms that are spatially adapted do not typically accommodate the temporal characteristics of the underlying data. The effectiveness of the FDCA is illustrated using an application to both empirical and simulated data from about 400 sensors in a 2.5 square miles network area in downtown San Francisco, California. The results demonstrate the superior ability of the the FDCA in identifying true clusters compared to functional only and distributional only algorithms and similar performance to a model-based clustering algorithm 
650 4 |a Journal Article 
650 4 |a 62H11 
650 4 |a 62H30 
650 4 |a 62P30 
650 4 |a Agglomerative hierarchical clustering 
650 4 |a distributional 
650 4 |a functional 
650 4 |a non-parametric 
650 4 |a spatial 
700 1 |a Evers, L  |e verfasserin  |4 aut 
700 1 |a Thakuriah, P  |e verfasserin  |4 aut 
700 1 |a Ampountolas, K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 4 vom: 21., Seite 909-926  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:4  |g day:21  |g pages:909-926 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.2001443  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 4  |b 21  |h 909-926