|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM354191977 |
003 |
DE-627 |
005 |
20250304125930.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202212308
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1180.xml
|
035 |
|
|
|a (DE-627)NLM354191977
|
035 |
|
|
|a (NLM)36913606
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chu, Youqi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.05.2023
|
500 |
|
|
|a Date Revised 25.05.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8 Co0.1 Mn0.1 O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα- (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a LiF&FeF3
|
650 |
|
4 |
|a intergranular cracks
|
650 |
|
4 |
|a lithium-ion battery
|
650 |
|
4 |
|a nanoscale structural degradation
|
650 |
|
4 |
|a oxygen vacancy
|
700 |
1 |
|
|a Mu, Yongbiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Lingfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Buke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Meisheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xi, Shibo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Lin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 21 vom: 01. Mai, Seite e2212308
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:21
|g day:01
|g month:05
|g pages:e2212308
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202212308
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 21
|b 01
|c 05
|h e2212308
|