Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 21 vom: 01. Mai, Seite e2212308
1. Verfasser: Chu, Youqi (VerfasserIn)
Weitere Verfasser: Mu, Yongbiao, Zou, Lingfeng, Hu, Yan, Cheng, Jie, Wu, Buke, Han, Meisheng, Xi, Shibo, Zhang, Qing, Zeng, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article LiF&FeF3 intergranular cracks lithium-ion battery nanoscale structural degradation oxygen vacancy
LEADER 01000caa a22002652c 4500
001 NLM354191977
003 DE-627
005 20250304125930.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202212308  |2 doi 
028 5 2 |a pubmed25n1180.xml 
035 |a (DE-627)NLM354191977 
035 |a (NLM)36913606 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chu, Youqi  |e verfasserin  |4 aut 
245 1 0 |a Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.05.2023 
500 |a Date Revised 25.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8 Co0.1 Mn0.1 O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα- (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs) 
650 4 |a Journal Article 
650 4 |a LiF&FeF3 
650 4 |a intergranular cracks 
650 4 |a lithium-ion battery 
650 4 |a nanoscale structural degradation 
650 4 |a oxygen vacancy 
700 1 |a Mu, Yongbiao  |e verfasserin  |4 aut 
700 1 |a Zou, Lingfeng  |e verfasserin  |4 aut 
700 1 |a Hu, Yan  |e verfasserin  |4 aut 
700 1 |a Cheng, Jie  |e verfasserin  |4 aut 
700 1 |a Wu, Buke  |e verfasserin  |4 aut 
700 1 |a Han, Meisheng  |e verfasserin  |4 aut 
700 1 |a Xi, Shibo  |e verfasserin  |4 aut 
700 1 |a Zhang, Qing  |e verfasserin  |4 aut 
700 1 |a Zeng, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 21 vom: 01. Mai, Seite e2212308  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:21  |g day:01  |g month:05  |g pages:e2212308 
856 4 0 |u http://dx.doi.org/10.1002/adma.202212308  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 21  |b 01  |c 05  |h e2212308