The impact of agricultural management on soil aggregation and carbon storage is regulated by climatic thresholds across a 3000 km European gradient

© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 11 vom: 21. Juni, Seite 3177-3192
1. Verfasser: Edlinger, Anna (VerfasserIn)
Weitere Verfasser: Garland, Gina, Banerjee, Samiran, Degrune, Florine, García-Palacios, Pablo, Herzog, Chantal, Pescador, David Sánchez, Romdhane, Sana, Ryo, Masahiro, Saghaï, Aurélien, Hallin, Sara, Maestre, Fernando T, Philippot, Laurent, Rillig, Matthias C, van der Heijden, Marcel G A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article aggregate stability agro-ecosystems aridity climatic threshold environmental gradient intensive agriculture soil organic carbon Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM354034200
003 DE-627
005 20231226061343.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16677  |2 doi 
028 5 2 |a pubmed24n1180.xml 
035 |a (DE-627)NLM354034200 
035 |a (NLM)36897740 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Edlinger, Anna  |e verfasserin  |4 aut 
245 1 4 |a The impact of agricultural management on soil aggregation and carbon storage is regulated by climatic thresholds across a 3000 km European gradient 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2023 
500 |a Date Revised 30.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (-56%) and SOC stocks (-35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration 
650 4 |a Journal Article 
650 4 |a aggregate stability 
650 4 |a agro-ecosystems 
650 4 |a aridity 
650 4 |a climatic threshold 
650 4 |a environmental gradient 
650 4 |a intensive agriculture 
650 4 |a soil organic carbon 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Garland, Gina  |e verfasserin  |4 aut 
700 1 |a Banerjee, Samiran  |e verfasserin  |4 aut 
700 1 |a Degrune, Florine  |e verfasserin  |4 aut 
700 1 |a García-Palacios, Pablo  |e verfasserin  |4 aut 
700 1 |a Herzog, Chantal  |e verfasserin  |4 aut 
700 1 |a Pescador, David Sánchez  |e verfasserin  |4 aut 
700 1 |a Romdhane, Sana  |e verfasserin  |4 aut 
700 1 |a Ryo, Masahiro  |e verfasserin  |4 aut 
700 1 |a Saghaï, Aurélien  |e verfasserin  |4 aut 
700 1 |a Hallin, Sara  |e verfasserin  |4 aut 
700 1 |a Maestre, Fernando T  |e verfasserin  |4 aut 
700 1 |a Philippot, Laurent  |e verfasserin  |4 aut 
700 1 |a Rillig, Matthias C  |e verfasserin  |4 aut 
700 1 |a van der Heijden, Marcel G A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 11 vom: 21. Juni, Seite 3177-3192  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:11  |g day:21  |g month:06  |g pages:3177-3192 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16677  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 11  |b 21  |c 06  |h 3177-3192