Realizing Photoswitchable Mechanoluminescence in Organic Crystals Based on Photochromism
© 2023 Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 21 vom: 18. Mai, Seite e2212273 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2023
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article cyclization/decyclization mechanoluminescence photoswitch organic mechanoluminescence photochromism smart luminescent materials |
| Zusammenfassung: | © 2023 Wiley-VCH GmbH. Organic mechanoluminescent (ML) materials possessing photophysical properties that are sensitive to multiple external stimuli have shown great potential in many fields, including optic and sensing. Particularly, the photoswitchable ML property for these materials is fundamental to their applications but remains a formidable challenge. Herein, photoswitchable ML is successfully realized by endowing reversible photochromic properties to an ML molecule, namely 2-(1,2,2-triphenylvinyl) fluoropyridine (o-TPF). o-TPF shows both high-contrast photochromism with a distinct color change from white to purplish red, as well as bright blue ML (λML = 453 nm). The ML property can be repeatedly switched between ON and OFF states under alternate UV and visible light irradiation. Impressively, the photoswitchable ML is of high stability and repeatability. The ML can be reversibly switched on and off by conducting alternate UV and visible light irradiation in cycles under ambient conditions. Experimental results and theoretical calculations reveal that the change of dipole moment of o-TPF during the photochromic process is responsible for the photoswitchable ML. These results outline a fundamental strategy to achieve for the control of organic ML and pave the way to the development of expanded smart luminescent materials and their applications |
|---|---|
| Beschreibung: | Date Completed 25.05.2023 Date Revised 25.05.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202212273 |