Low-density tissue scaffold imaging by synchrotron radiation propagation-based imaging computed tomography with helical acquisition mode

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 30(2023), Pt 2 vom: 01. März, Seite 417-429
1. Verfasser: Duan, Xiaoman (VerfasserIn)
Weitere Verfasser: Li, Naitao, Cooper, David M L, Ding, Xiao Fan, Chen, Xiongbiao, Zhu, Ning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article helical acquisition mode propagation-based imaging ring artifact removal tissue hydrogel scaffolds Hydrogels
LEADER 01000caa a22002652c 4500
001 NLM353975796
003 DE-627
005 20250304123206.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577523000772  |2 doi 
028 5 2 |a pubmed25n1179.xml 
035 |a (DE-627)NLM353975796 
035 |a (NLM)36891855 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Duan, Xiaoman  |e verfasserin  |4 aut 
245 1 0 |a Low-density tissue scaffold imaging by synchrotron radiation propagation-based imaging computed tomography with helical acquisition mode 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.03.2023 
500 |a Date Revised 14.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a open access. 
520 |a Visualization of low-density tissue scaffolds made from hydrogels is important yet challenging in tissue engineering and regenerative medicine (TERM). For this, synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT) has great potential, but is limited due to the ring artifacts commonly observed in SR-PBI-CT images. To address this issue, this study focuses on the integration of SR-PBI-CT and helical acquisition mode (i.e. SR-PBI-HCT) to visualize hydrogel scaffolds. The influence of key imaging parameters on the image quality of hydrogel scaffolds was investigated, including the helical pitch (p), photon energy (E) and the number of acquisition projections per rotation/revolution (Np), and, on this basis, those parameters were optimized to improve image quality and to reduce noise level and artifacts. The results illustrate that SR-PBI-HCT imaging shows impressive advantages in avoiding ring artifacts with p = 1.5, E = 30 keV and Np = 500 for the visualization of hydrogel scaffolds in vitro. Furthermore, the results also demonstrate that hydrogel scaffolds can be visualized using SR-PBI-HCT with good contrast while at a low radiation dose, i.e. 342 mGy (voxel size of 26 µm, suitable for in vivo imaging). This paper presents a systematic study on hydrogel scaffold imaging using SR-PBI-HCT and the results reveal that SR-PBI-HCT is a powerful tool for visualizing and characterizing low-density scaffolds with a high image quality in vitro. This work represents a significant advance toward the non-invasive in vivo visualization and characterization of hydrogel scaffolds at a suitable radiation dose 
650 4 |a Journal Article 
650 4 |a helical acquisition mode 
650 4 |a propagation-based imaging 
650 4 |a ring artifact removal 
650 4 |a tissue hydrogel scaffolds 
650 7 |a Hydrogels  |2 NLM 
700 1 |a Li, Naitao  |e verfasserin  |4 aut 
700 1 |a Cooper, David M L  |e verfasserin  |4 aut 
700 1 |a Ding, Xiao Fan  |e verfasserin  |4 aut 
700 1 |a Chen, Xiongbiao  |e verfasserin  |4 aut 
700 1 |a Zhu, Ning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 30(2023), Pt 2 vom: 01. März, Seite 417-429  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnas 
773 1 8 |g volume:30  |g year:2023  |g number:Pt 2  |g day:01  |g month:03  |g pages:417-429 
856 4 0 |u http://dx.doi.org/10.1107/S1600577523000772  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 30  |j 2023  |e Pt 2  |b 01  |c 03  |h 417-429