Oxyanion Engineering Suppressed Iron Segregation in Nickel-Iron Catalysts Toward Stable Water Oxidation
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 21 vom: 07. Mai, Seite e2300347 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Fe segregations catalytic stability chemical interactions nitrate ions oxygen evolution reactions |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. Nickel-iron catalysts represent an appealing platform for electrocatalytic oxygen evolution reaction (OER) in alkaline media because of their high adjustability in components and activity. However, their long-term stabilities under high current density still remain unsatisfactory due to undesirable Fe segregation. Herein, a nitrate ion (NO3 - ) tailored strategy is developed to mitigate Fe segregation, and thereby improve the OER stability of nickel-iron catalyst. X-ray absorption spectroscopy combined with theoretical calculations indicate that introducing Ni3 (NO3 )2 (OH)4 with stable NO3 - in the lattice is conducive to constructing the stable interface of FeOOH/Ni3 (NO3 )2 (OH)4 via the strong interaction between Fe and incorporated NO3 - . Time of flight secondary ion mass spectrometry and wavelet transformation analysis demonstrate that the NO3 - tailored nickel-iron catalyst greatly alleviates Fe segregation, exhibiting a considerably enhanced long-term stability with a six-fold improvement over FeOOH/Ni(OH)2 without NO3 - modification. This work represents a momentous step toward regulating Fe segregation for stabilizing the catalytic performances of nickel-iron catalysts |
---|---|
Beschreibung: | Date Completed 25.05.2023 Date Revised 25.05.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202300347 |