Cartilage Lacuna-Inspired Microcarriers Drive Hyaline Neocartilage Regeneration

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 30 vom: 31. Juli, Seite e2212114
1. Verfasser: Ding, Sheng-Long (VerfasserIn)
Weitere Verfasser: Zhao, Xi-Yuan, Xiong, Wei, Ji, Lin-Feng, Jia, Min-Xuan, Liu, Yan-Yan, Guo, Hai-Tao, Qu, Feng, Cui, Wenguo, Gu, Qi, Zhang, Ming-Zhu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Wnt pathway cartilage tissue engineering chondrocyte dedifferentiation geometric constraints microcarriers Hyaluronic Acid 9004-61-9
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Cartilage equivalents from hydrogels containing chondrocytes exhibit excellent potential in hyaline cartilage regeneration, yet current approaches have limited success at reconstituting the architecture to culture nondifferentiated chondrocytes in vitro. In this study, specially designed lacunar hyaluronic acid microcarriers (LHAMCs) with mechanotransductive conditions that rapidly form stable hyaluronic acid (HA) N-hydroxy succinimide ester (NHS-ester) are reported. Specifically, carboxyl-functionalized HA is linked to collagen type I via amide-crosslinking, and gas foaming produced by ammonium bicarbonate forms concave surface of the microcarriers. The temporal 3D culture of chondrocytes on LHAMCs uniquely remodels the extracellular matrix to induce hyaline cartilaginous microtissue regeneration and prevents an anaerobic-to-aerobic metabolism transition in response to the geometric constraints. Furthermore, by inhibiting the canonical Wnt pathway, LHAMCs prevent β-catenin translocation to the nucleus, repressing chondrocyte dedifferentiation. Additionally, the subcutaneous implantation model indicates that LHAMCs display favorable cytocompatibility and drive robust hyaline chondrocyte-derived neocartilage formation. These findings reveal a novel strategy for regulating chondrocyte dedifferentiation. The current study paves the way for a better understanding of geometrical insight clues into mechanotransduction interaction in regulating cell fate, opening new avenues for advancing tissue engineering
Beschreibung:Date Completed 28.07.2023
Date Revised 28.07.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202212114