Polymer Informatics at Scale with Multitask Graph Neural Networks

© 2023 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 35(2023), 4 vom: 28. Feb., Seite 1560-1567
1. Verfasser: Gurnani, Rishi (VerfasserIn)
Weitere Verfasser: Kuenneth, Christopher, Toland, Aubrey, Ramprasad, Rampi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2023 The Authors. Published by American Chemical Society.
Artificial intelligence-based methods are becoming increasingly effective at screening libraries of polymers down to a selection that is manageable for experimental inquiry. The vast majority of presently adopted approaches for polymer screening rely on handcrafted chemostructural features extracted from polymer repeat units-a burdensome task as polymer libraries, which approximate the polymer chemical search space, progressively grow over time. Here, we demonstrate that directly "machine learning" important features from a polymer repeat unit is a cheap and viable alternative to extracting expensive features by hand. Our approach-based on graph neural networks, multitask learning, and other advanced deep learning techniques-speeds up feature extraction by 1-2 orders of magnitude relative to presently adopted handcrafted methods without compromising model accuracy for a variety of polymer property prediction tasks. We anticipate that our approach, which unlocks the screening of truly massive polymer libraries at scale, will enable more sophisticated and large scale screening technologies in the field of polymer informatics
Beschreibung:Date Revised 07.03.2023
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.2c02991