A Z-Scheme Heterojunctional Photocatalyst Engineered with Spatially Separated Dual Redox Sites for Selective CO2 Reduction with Water : Insight by In Situ µs-Transient Absorption Spectra

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 21 vom: 10. Mai, Seite e2300064
1. Verfasser: Sun, Ling (VerfasserIn)
Weitere Verfasser: Zhang, Ziqing, Bian, Ji, Bai, Fuquan, Su, Hengwei, Li, Zhijun, Xie, Jijia, Xu, Rongping, Sun, Jianhui, Bai, Linlu, Chen, Cailing, Han, Yu, Tang, Junwang, Jing, Liqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CO2 conversions Z-schemes dual redox sites electron kinetics g-C3N4 heterojunction
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Solar-driven CO2 reduction by water with a Z-scheme heterojunction affords an avenue to access energy storage and to alleviate greenhouse gas (GHG) emissions, yet the separation of charge carriers and the integrative regulation of water oxidation and CO2 activation sites remain challenging. Here, a BiVO4 /g-C3 N4 (BVO/CN) Z-scheme heterojunction as such a prototype is constructed by spatially separated dual sites with CoOx clusters and imidazolium ionic liquids (IL) toward CO2 photoreduction. The optimized CoOx -BVO/CN-IL delivers an ≈80-fold CO production rate without H2 evolution compared with urea-C3 N4 counterpart, together with nearly stoichiometric O2 gas produced. Experimental results and DFT calculations unveil the cascade Z-scheme charge transfer and subsequently the prominent redox co-catalysis by CoOx and IL for holes-H2 O oxidation and electrons-CO2 reduction, respectively. Moreover, in situ µs-transient absorption spectra clearly show the function of each cocatalyst and quantitatively reveal that the resulting CoOx -BVO/CN-IL reaches up to the electron transfer efficiency of 36.4% for CO2 reduction, far beyond those for BVO/CN (4.0%) and urea-CN (0.8%), underlining an exceptional synergy of dual reaction sites engineering. This work provides deep insights and guidelines for the rational design of highly efficient Z-scheme heterojunctions with precise redox catalytic sites toward solar fuel production
Beschreibung:Date Completed 25.05.2023
Date Revised 25.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202300064