Toward High Conversion Efficiency of Thermoelectric Modules through Synergistical Optimization of Layered Materials

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 20 vom: 15. Mai, Seite e2210407
1. Verfasser: Li, Wenjie (VerfasserIn)
Weitere Verfasser: Poudel, Bed, Kishore, Ravi Anant, Nozariasbmarz, Amin, Liu, Na, Zhang, Yu, Priya, Shashank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conversion efficiency half-Heusler alloy layered materials pressure-induced annealing synergistical optimization thermoelectric
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Waste-heat electricity generation using high-efficiency solid-state conversion technology can significantly decrease dependence on fossil fuels. Here, a synergistical optimization of layered half-Heusler (hH) materials and module to improve thermoelectric conversion efficiency is reported. This is realized by manufacturing multiple thermoelectric materials with major compositional variations and temperature-gradient-coupled carrier distribution by one-step spark plasma sintering. This strategy provides a solution to overcome the intrinsic concomitants of the conventional segmented architecture that only considers the matching of the figure of merit (zT) with the temperature gradient. The current design is dedicated to temperature-gradient-coupled resistivity and compatibility matching, optimum zT matching, and reducing contact resistance sources. By enhancing the quality factor of the materials by Sb-vapor-pressure-induced annealing, a superior zT of 1.47 at 973 K is achieved for (Nb, Hf)FeSb hH alloys. Along with the low-temperature high-zT hH alloys of (Nb, Ta, Ti, V)FeSb, the single stage layered hH modules are developed with efficiencies of ≈15.2% and ≈13.5% for the single-leg and unicouple thermoelectric modules, respectively, under ΔT of 670 K. Therefore, this work has a transformative impact on the design and development of next-generation thermoelectric generators for any thermoelectric material families
Beschreibung:Date Completed 18.05.2023
Date Revised 18.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202210407