Efficient Inorganic Vapor-Assisted Defects Passivation for Perovskite Solar Module
© 2023 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 22 vom: 01. Juni, Seite e2211593 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article inorganic passivation layer modules perovskite photovoltaics vapor-assisted passivation |
Résumé: | © 2023 Wiley-VCH GmbH. Surface trap as intrinsic defects-mediated non-radiative charge recombination is a major obstacle to achieving the reliable fabrication of high-efficiency and large-area perovskite photovoltaics. Here a CS2 vapor-assisted passivation strategy is proposed for perovskite solar module, aiming to passivate the iodine vacancy and uncoordinated Pb2+ caused by ion migration. Significantly, this method can avoid the disadvantages of inhomogeneity film caused by spin-coating-assisted passivation and reconstruction of perovskite surface from solvent. The CS2 vapor passivated perovskite device presents a higher defect formation energy (0.54 eV) of iodine vacancy than the pristine (0.37 eV), while uncoordinated Pb2+ is bonded with CS2 . The shallow level defect passivation of iodine vacancy and uncoordinated Pb2+ has obviously enhanced the device efficiencies (25.20% for 0.08 cm2 and 20.66% for 40.6 cm2 ) and the stability, exhibiting an average T80 -lifetime of 1040 h working at the maximum power point, and maintaining over 90% of initial efficiency after 2000 h at RH = 30% and 30 °C |
---|---|
Description: | Date Completed 01.06.2023 Date Revised 01.06.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202211593 |