Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 20 vom: 03. Mai, Seite e2211600
1. Verfasser: Zou, Deng (VerfasserIn)
Weitere Verfasser: He, Zhenfei, Chen, Ming, Yan, Lizhi, Guo, Yifan, Gao, Guoyun, Li, Can, Piao, Yingzhe, Cheng, Xing, Chan, Paddy K L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Organic field-effect transistor electrode transfer mica patterning monolayer organic semiconductor solution shearing
LEADER 01000caa a22002652c 4500
001 NLM353473693
003 DE-627
005 20250304113326.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202211600  |2 doi 
028 5 2 |a pubmed25n1177.xml 
035 |a (DE-627)NLM353473693 
035 |a (NLM)36841244 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zou, Deng  |e verfasserin  |4 aut 
245 1 0 |a Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.05.2023 
500 |a Date Revised 18.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Organic field-effect transistors (OFETs) based on 2D monolayer organic semiconductors (OSC) have demonstrated promising potentials for various applications, such as light emitting diode (LED) display drivers, logic circuits, and wearable electrocardiography (ECG) sensors. To date, the fabrications of this class of highly crystallized 2D organic semiconductors (OSC) are dominated by solution shearing. As these organic active layers are only a few molecular layers thick, their compatibilities with conventional thermal evaporated top electrodes or sophisticated photolithography patterning are very limited, which also restricts their device density. Here, an electrode transfer stamp and a semiconductor patterning stamp are developed to fabricate OFETs with channel lengths down to 3 µm over a large area without using any chemicals or causing any damage to the active layer. 2D 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 -DNTT) monolayer OFETs developed by this new approach shows decent performance properties with a low threshold voltage (VTH ) less than 0.5 V, intrinsic mobility higher than 10 cm2 V-1 s-1 and a subthreshold swing (SS) less than 100 mV dec-1 . The proposed patterning approach is completely comparable with ultraflexible parylene substrate less than 2 µm thick. By further reducing the channel length down to 2 µm and using the monolayer OFET in an AC/DC rectifying circuit, the measured cutoff frequency is up to 17.3 MHz with an input voltage of 4 V. The newly proposed electrode transfer and patterning stamps have addressed the long-lasting compatibility problem of depositing electrodes onto 2D organic monolayer and the semiconductor patterning. It opens a new path to reduce the fabrication cost and simplify the manufacturing process of high-density OFETs for more advanced electronic or biomedical applications 
650 4 |a Journal Article 
650 4 |a Organic field-effect transistor 
650 4 |a electrode transfer 
650 4 |a mica patterning 
650 4 |a monolayer organic semiconductor 
650 4 |a solution shearing 
700 1 |a He, Zhenfei  |e verfasserin  |4 aut 
700 1 |a Chen, Ming  |e verfasserin  |4 aut 
700 1 |a Yan, Lizhi  |e verfasserin  |4 aut 
700 1 |a Guo, Yifan  |e verfasserin  |4 aut 
700 1 |a Gao, Guoyun  |e verfasserin  |4 aut 
700 1 |a Li, Can  |e verfasserin  |4 aut 
700 1 |a Piao, Yingzhe  |e verfasserin  |4 aut 
700 1 |a Cheng, Xing  |e verfasserin  |4 aut 
700 1 |a Chan, Paddy K L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 20 vom: 03. Mai, Seite e2211600  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:20  |g day:03  |g month:05  |g pages:e2211600 
856 4 0 |u http://dx.doi.org/10.1002/adma.202211600  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 20  |b 03  |c 05  |h e2211600