|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM35331997X |
003 |
DE-627 |
005 |
20231226055724.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.2c03424
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1177.xml
|
035 |
|
|
|a (DE-627)NLM35331997X
|
035 |
|
|
|a (NLM)36825771
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a McNamee, Cathy E
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Use of Silica Nanoparticle Langmuir Films to Determine the Effect of Surface Roughness on the Change in the Forces between Two Silica Surfaces by a Liquid Flow
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.03.2023
|
500 |
|
|
|a Date Revised 07.03.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We aimed to determine how surface roughness changes the effect of a liquid flow on the forces between two charged surfaces. This is because many applications require liquid to flow through charged confined areas and because all surfaces show a degree of roughness. We prepared films of different roughness by making mixed Langmuir films of silica nanoparticles (NPs) of two different diameters at air-100 mM NaCl aqueous interfaces and then by transferring and sintering these films to silicon wafers. Atomic force microscope (AFM) imaging showed that the film roughness decreased (1) with an NP diameter decrease and (2) an increased ratio of small NPs in a mixed film of small and larger NPs. This decrease was explained by a decreased NP aggregation in the film, due to the increased Brownian velocity that accompanies an NP diameter decrease. Force-separation curves were next measured with an AFM between a microsized silica particle (probe) and a smooth substrate (silicon wafer) or the rough NP films in 1 mM NaCl. In the absence of a liquid flow, the repulsive forces decreased with an increased substrate roughness. This reduction was explained by an increased difference between the real zero separation distance and apparent zero separation distance (the distance between the first point of mechanical contact between the probe and substrate) with an increased surface roughness. In the presence of a liquid flow, the repulsive forces decreased in the case of a smooth substrate. However, the repulsive forces were reduced less by a liquid flow for rough substrates. This result was explained by the difference in the effect of liquid flow on the diffuse layer for the smooth and rough surfaces. Surface roughness is postulated to modify the liquid flow trajectory near the surfaces and to cause ion concentration gradients near the surface. These factors are proposed to lessen the change in the diffuse layer brought about by a liquid flow. This would then reduce the change in the forces
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kanno, Koutarou
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 39(2023), 9 vom: 07. März, Seite 3450-3461
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:9
|g day:07
|g month:03
|g pages:3450-3461
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.2c03424
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 9
|b 07
|c 03
|h 3450-3461
|