Multi-resolution super learner for voxel-wise classification of prostate cancer using multi-parametric MRI

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 3 vom: 10., Seite 805-826
1. Verfasser: Jin, Jin (VerfasserIn)
Weitere Verfasser: Zhang, Lin, Leng, Ethan, Metzger, Gregory J, Koopmeiners, Joseph S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62 62P10 Multi-parametric MRI multi-resolution modeling ordinal clinical significance of PCa super learner voxel-wise PCa classification
LEADER 01000caa a22002652 4500
001 NLM353253413
003 DE-627
005 20241208231827.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.2017411  |2 doi 
028 5 2 |a pubmed24n1625.xml 
035 |a (DE-627)NLM353253413 
035 |a (NLM)36819087 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jin, Jin  |e verfasserin  |4 aut 
245 1 0 |a Multi-resolution super learner for voxel-wise classification of prostate cancer using multi-parametric MRI 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.12.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Multi-parametric MRI (mpMRI) is a critical tool in prostate cancer (PCa) diagnosis and management. To further advance the use of mpMRI in patient care, computer aided diagnostic methods are under continuous development for supporting/supplanting standard radiological interpretation. While voxel-wise PCa classification models are the gold standard, few if any approaches have incorporated the inherent structure of the mpMRI data, such as spatial heterogeneity and between-voxel correlation, into PCa classification. We propose a machine learning-based method to fill in this gap. Our method uses an ensemble learning approach to capture regional heterogeneity in the data, where classifiers are developed at multiple resolutions and combined using the super learner algorithm, and further account for between-voxel correlation through a Gaussian kernel smoother. It allows any type of classifier to be the base learner and can be extended to further classify PCa sub-categories. We introduce the algorithms for binary PCa classification, as well as for classifying the ordinal clinical significance of PCa for which a weighted likelihood approach is implemented to improve the detection of less prevalent cancer categories. The proposed method has shown important advantages over conventional modeling and machine learning approaches in simulations and application to our motivating patient data 
650 4 |a Journal Article 
650 4 |a 62 
650 4 |a 62P10 
650 4 |a Multi-parametric MRI 
650 4 |a multi-resolution modeling 
650 4 |a ordinal clinical significance of PCa 
650 4 |a super learner 
650 4 |a voxel-wise PCa classification 
700 1 |a Zhang, Lin  |e verfasserin  |4 aut 
700 1 |a Leng, Ethan  |e verfasserin  |4 aut 
700 1 |a Metzger, Gregory J  |e verfasserin  |4 aut 
700 1 |a Koopmeiners, Joseph S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 3 vom: 10., Seite 805-826  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:3  |g day:10  |g pages:805-826 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.2017411  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 3  |b 10  |h 805-826