Development and test of highly accurate endpoint free energy methods. 1 : Evaluation of ABCG2 charge model on solvation free energy prediction and optimization of atom radii suitable for more accurate solvation free energy prediction by the PBSA method

© 2023 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 14 vom: 30. Mai, Seite 1334-1346
1. Verfasser: Sun, Yuchen (VerfasserIn)
Weitere Verfasser: He, Xibing, Hou, Tingjun, Cai, Lianjin, Man, Viet Hoag, Wang, Junmei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Review GAFF2 MM-GBSA MM-PBSA atom radii charge models solvation free energy
LEADER 01000naa a22002652 4500
001 NLM353137308
003 DE-627
005 20231226055323.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27089  |2 doi 
028 5 2 |a pubmed24n1177.xml 
035 |a (DE-627)NLM353137308 
035 |a (NLM)36807356 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Yuchen  |e verfasserin  |4 aut 
245 1 0 |a Development and test of highly accurate endpoint free energy methods. 1  |b Evaluation of ABCG2 charge model on solvation free energy prediction and optimization of atom radii suitable for more accurate solvation free energy prediction by the PBSA method 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.04.2023 
500 |a Date Revised 24.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson-Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1-BCC-GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1-BCC (Austin Model 1-bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types, on, oi, hn1, hn2, hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein-ligand binding free energies using the MM-PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM-PBSA method 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a GAFF2 
650 4 |a MM-GBSA 
650 4 |a MM-PBSA 
650 4 |a atom radii 
650 4 |a charge models 
650 4 |a solvation free energy 
700 1 |a He, Xibing  |e verfasserin  |4 aut 
700 1 |a Hou, Tingjun  |e verfasserin  |4 aut 
700 1 |a Cai, Lianjin  |e verfasserin  |4 aut 
700 1 |a Man, Viet Hoag  |e verfasserin  |4 aut 
700 1 |a Wang, Junmei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 14 vom: 30. Mai, Seite 1334-1346  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:14  |g day:30  |g month:05  |g pages:1334-1346 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 14  |b 30  |c 05  |h 1334-1346