The cotton miR530-SAP6 module activated by systemic acquired resistance mediates plant defense against Verticillium dahliae

Copyright © 2023 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 330(2023) vom: 01. Mai, Seite 111647
1. Verfasser: Hu, Guang (VerfasserIn)
Weitere Verfasser: Wang, Bingting, Jia, Pei, Wu, Pan, Lu, Chengzhe, Xu, Yunjiao, Shi, Linfang, Zhang, Feiyan, Zhong, Naiqin, Chen, Aimin, Wu, Jiahe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Gossypium hirsutum Stress-associated proteins 6 Systemic acquired resistance Verticillium dahliae miR530 MicroRNAs RNA, Small Untranslated Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier B.V. All rights reserved.
Many cotton miRNAs in root responding to Verticillium dahliae infection have been identified. Conversely, the miRNAs in leaf distantly responding to this fungal infection from roots via systemic acquired resistance (SAR) remain to be explored. Here, we constructed two groups of leaf sRNA libraries in cotton treated with V. dahliae via root-dipped method at 7- and 10-day post inoculation. Analysis of high-throughput sRNA sequencing identified 75 known and 379 novel miRNAs, of which 41 miRNAs significantly differentially expressed in fungal treatment plant leaves compared to the mock treatment at two time points. Then we characterized the cotton miR530-SAP6 module as a representative in the distant response to V. dahliae infection in roots. Based on degradome data and a luciferase (LUC) fusion reporter analysis, ghr-miR530 directedly cleaved GhSAP6 mRNA during the post-transcriptional process. Silencing of ghr-miR530 increased plant defense to this fungus, while its overexpression attenuated plant resistance. In link with ghr-miR530 function, the knockdown of GhSAP6 also decreased the plant resistance, resulting from down-regulation of SA-relative gene expression including GhNPR1 and GhPR1. In all, these results demonstrated that there are numerous miRNAs in leaf distantly responding to V. dahliae infection in roots mediate plant immunity
Beschreibung:Date Completed 31.03.2023
Date Revised 31.03.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2023.111647