Synergetic Regulation of the Microstructure and Acidity of HZSM-5/MCM-41 for Efficient Catalytic Cracking of n-Decane

Alkane catalytic cracking is regarded as one of the most significant processes for light olefin production; however, it suffers from serve catalyst deactivation due to coke formation. Herein, HZSM-5/MCM-41 composites with different Si/Al2 ratios were first prepared by the hydrothermal method. The ph...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 9 vom: 07. März, Seite 3494-3501
1. Verfasser: Zhang, Yaoyuan (VerfasserIn)
Weitere Verfasser: Wu, Qin, Zhang, Kun, Shi, Daxin, Jia, Shujun, Chen, Kangcheng, Li, Hansheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Alkane catalytic cracking is regarded as one of the most significant processes for light olefin production; however, it suffers from serve catalyst deactivation due to coke formation. Herein, HZSM-5/MCM-41 composites with different Si/Al2 ratios were first prepared by the hydrothermal method. The physicochemical properties of the prepared catalysts were analyzed by a series of bulk and surface characterization methods, and the catalytic performance was tested in n-decane catalytic cracking. It was found that HZSM-5/MCM-41 showed a higher selectivity to light olefins and a lower deactivation rate compared with the parent HZSM-5 due to an enhanced diffusion rate and decreased acid density. Moreover, the structure-reactivity relationship revealed that conversion, light olefin selectivity, and the deactivation rate strongly depended on the total acid density. Furthermore, HZSM-5/MCM-41 was further extruded with γ-Al2O3 to obtain the catalyst pellet, which showed an even higher selectivity to light olefins (∼48%) resulting from the synergy effect of the fast diffusion rate and passivation of external acid density
Beschreibung:Date Completed 07.03.2023
Date Revised 07.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00028