|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM353090816 |
003 |
DE-627 |
005 |
20231226055216.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.2c03209
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1176.xml
|
035 |
|
|
|a (DE-627)NLM353090816
|
035 |
|
|
|a (NLM)36802658
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sharma, Ravi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Removal of Low Trace ppb-Level Perfluorooctanesulfonic Acid (PFOS) with ZIF-8 Coatings Involving Adsorbent Degradation
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.03.2023
|
500 |
|
|
|a Date Revised 07.03.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a For the first time, low trace-level removal of perfluorooctanesulfonic acid (PFOS), i.e., 20-500 μg/L (ppb), from aqueous solutions using zeolitic imidazolate framework-8 (ZIF-8)-coated copper sheet (ZIF-8Cu) composite is reported here. In comparison with different commercial activated carbon (AC) and all-silica zeolites, the composite showed the highest removal rate of 98%, which remained consistent over a wide range of concentrations. Additionally, no adsorbent leaching from the composite was noticed, which eradicated pre-analysis steps such as filtration and centrifugation, unless needed for other adsorbents studied here. The composite displayed fast uptake with saturation reaching within 4 h, irrespective of the initial concentration. However, the morphological and structural characterization revealed surface degradation of ZIF-8 crystals, along with a decline in the crystal size. The adsorption of PFOS on ZIF-8 crystals was linked to chemisorption, as the surface degradation surges with an increase in PFOS concentration or with cyclic exposure at low concentrations. Methanol seemingly removed surface debris (partially), thus providing access to ZIF-8 beneath the surface debris. Overall, the findings demonstrate that at low trace ppb-level PFOS concentrations ZIF-8 can be considered as a possible candidate for PFOS removal, even though it suffers slow surface degradation, it also removes efficiently PFOS molecules from aqueous solutions
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhou, Zhuoheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Themelis, Thomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Van Assche, Tom R C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Eeltink, Sebastiaan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Denayer, Joeri F M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 9 vom: 07. März, Seite 3341-3349
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:9
|g day:07
|g month:03
|g pages:3341-3349
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.2c03209
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 9
|b 07
|c 03
|h 3341-3349
|