Nanozymes : Definition, Activity, and Mechanisms

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 10 vom: 03. März, Seite e2211041
1. Verfasser: Zandieh, Mohamad (VerfasserIn)
Weitere Verfasser: Liu, Juewen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article catalytic turnover enzymes iron oxide nanomaterials nanozymes Enzymes, Immobilized
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
"Nanozyme" is used to describe various catalysts from immobilized inorganic metal complexes, immobilized enzymes to inorganic nanoparticles. Here, the history of nanozymes is dvescribed in detail, and they can be largely separated into two types. Type 1 nanozymes refer to immobilized catalysts or enzymes on nanomaterials, which were dominant in the first decade since 2004. Type 2 nanozymes, which rely on the surface catalytic properties of inorganic nanomaterials, are the dominating type in the past decade. The definition of nanozymes is evolving, and a definition based on the same substrates and products as enzymes are able to cover most currently claimed nanozymes, although they may have different mechanisms compared to their enzyme counterparts. A broader definition can inspire application-based research to replace enzymes with nanomaterials for analytical, environmental, and biomedical applications. Comparison with enzymes also requires a clear definition of a nanozyme unit. Four ways of defining a nanozyme unit are described, with iron oxide and horseradish peroxidase activity comparison as examples in each definition. Growing work is devoted to understanding the catalytic mechanism of nanozymes, which provides a basis for further rational engineering of active sites. Finally, future perspective of the nanozyme field is discussed
Beschreibung:Date Completed 08.03.2024
Date Revised 08.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202211041