Ferroelectric Domain Wall Engineering Enables Thermal Modulation in PMN-PT Single Crystals

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 22 vom: 10. Juni, Seite e2211286
1. Verfasser: Negi, Ankit (VerfasserIn)
Weitere Verfasser: Kim, Hwang Pill, Hua, Zilong, Timofeeva, Anastasia, Zhang, Xuanyi, Zhu, Yong, Peters, Kara, Kumah, Divine, Jiang, Xiaoning, Liu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article domain walls ferroelectrics poling thermal conductivity thermal modulation
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Acting like thermal resistances, ferroelectric domain walls can be manipulated to realize dynamic modulation of thermal conductivity (k), which is essential for developing novel phononic circuits. Despite the interest, little attention has been paid to achieving room-temperature thermal modulation in bulk materials due to challenges in obtaining a high thermal conductivity switching ratio (khigh /klow ), particularly in commercially viable materials. Here, room-temperature thermal modulation in 2.5 mm-thick Pb(Mg1/3 Nb2/3 )O3 -xPbTiO3 (PMN-xPT) single crystals is demonstrated. With the use of advanced poling conditions, assisted by the systematic study on composition and orientation dependence of PMN-xPT, a range of thermal conductivity switching ratios with a maximum of ≈1.27 is observed. Simultaneous measurements of piezoelectric coefficient (d33 ) to characterize the poling state, domain wall density using polarized light microscopy (PLM), and birefringence change using quantitative PLM reveal that compared to the unpoled state, the domain wall density at intermediate poling states (0< d33 <d33,max ) is lower due to the enlargement in domain size. At optimized poling conditions (d33,max ), the domain sizes show increased inhomogeneity that leads to enhancement in the domain wall density. This work highlights the potential of commercially available PMN-xPT single crystals among other relaxor-ferroelectrics for achieving temperature control in solid-state devices
Beschreibung:Date Completed 01.06.2023
Date Revised 01.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202211286