|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM352960310 |
003 |
DE-627 |
005 |
20231226054915.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/wer.10846
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1176.xml
|
035 |
|
|
|a (DE-627)NLM352960310
|
035 |
|
|
|a (NLM)36789451
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Shulian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cultivation of algal-bacterial granular sludge and degradation characteristics of tetracycline
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.03.2023
|
500 |
|
|
|a Date Revised 01.03.2023
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 Water Environment Federation.
|
520 |
|
|
|a Due to the increasing use of antibiotics, tetracycline was frequently detected in wastewater. As a novel technology, algal-bacterial granular sludge process is expected to be widely used in wastewater treatment. However, the degradation effect of tetracycline by algal-bacterial granular sludge process and its degradation path is still unknown. In this study, mature and stable algal-bacterial granular sludge was cultured and the degradation of tetracycline by it was investigated. The results showed that the removal amount of 1-25 mg/L tetracycline by algal-bacterial granular sludge was 0.09-1.45 mg/g volatile suspended solids (VSS), in which the adsorption amount was 0.06-0.17 mg/g VSS and the degradation amount was 0.03-1.27 mg/g VSS. Tetracycline biosorption was dominant at its concentration of 1-3 mg/L, while biodegradation was predominant at 5-25 mg/L of tetracycline. At tetracycline concentration of 3-5 mg/L, the contribution of biosorption and biodegradation to tetracycline removal by algal-bacterial granular sludge process was almost equal. Algal-bacterial granular sludge could effectively degrade tetracycline through demethylation, dehydrogenation, deacylation, and deamination or their combination. In addition, the degradation products were nontoxic and hardly pose a threat to environmental health. The research results of this paper provide a solid theoretical basis for tetracycline removal by algal-bacterial granular sludge and a reference for the development of algal-bacterial granular sludge process for wastewater treatment in the presence of tetracycline. PRACTITIONER POINTS: Mature and stable algal-bacterial granular sludge was cultured. Tetracycline was removed by algal-bacterial granular sludge through biosorption and biodegradation. Algal-bacterial granular sludge could degrade tetracycline through demethylation, dehydrogenation, deacylation, and deamination or their combination. The degradation products were nontoxic
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a algal-bacterial granular sludge
|
650 |
|
4 |
|a biodegradation
|
650 |
|
4 |
|a biosorption
|
650 |
|
4 |
|a tetracycline
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a Tetracycline
|2 NLM
|
650 |
|
7 |
|a F8VB5M810T
|2 NLM
|
650 |
|
7 |
|a Anti-Bacterial Agents
|2 NLM
|
650 |
|
7 |
|a Wastewater
|2 NLM
|
700 |
1 |
|
|a Zhang, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ge, Hongmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hou, Huan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Huiqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pi, Kewu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 95(2023), 3 vom: 03. März, Seite e10846
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnns
|
773 |
1 |
8 |
|g volume:95
|g year:2023
|g number:3
|g day:03
|g month:03
|g pages:e10846
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/wer.10846
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 95
|j 2023
|e 3
|b 03
|c 03
|h e10846
|