Scalable Synthesis of 2D Mo2 C and Thickness-Dependent Hydrogen Evolution on Its Basal Plane and Edges

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 25 vom: 13. Juni, Seite e2209954
1. Verfasser: Wu, Jiabin (VerfasserIn)
Weitere Verfasser: Su, Jianwei, Wu, Tao, Huang, Liang, Li, Qun, Luo, Yongxin, Jin, Hongrun, Zhou, Jun, Zhai, Tianyou, Wang, Dingsheng, Gogotsi, Yury, Li, Yadong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hydrogen evolution reaction scalable synthesis transition metal carbides
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
2D transition metal carbides (2D TMCs and MXenes) are promising candidates for applications of energy storage and catalysis. However, producing high-quality, large 2D flakes of Mo2C MXene has been challenging. Here, a new salt-assisted templating approach is reported that enables the direct synthesis of 2D Mo2 C with low defect concentrations. KCl acts as a template to form an intermediate 2D product, facilitating Mo2 C formation without coarsening upon melting. The thickness of the flakes produced can range from monolayer (0.36 nm) to 10 layers (4.55 nm), and the electrocatalytical hydrogen evolution reaction (HER) activity of 2D Mo2 C is inversely proportional to its thickness. The monolayer Mo2 C shows remarkable HER performance with a current density of ≈6800 mA cm- 2 at 470 mV versus reversible hydrogen electrode and an ultrahigh turnover frequency of ≈17 500 s- 1 . This salt-assisted synthesis approach can also produce WC and V8 C7 nanosheets, expanding the family of 2D carbides. The new pathway eliminates the need for layered ceramic precursors, making it a versatile approach to direct synthesis of MXene-like 2D carbides
Beschreibung:Date Completed 22.06.2023
Date Revised 22.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202209954