An Engineered Living Intestinal Muscle Patch Produces Macroscopic Contractions that can Mix and Break Down Artificial Intestinal Contents

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 15 vom: 01. Apr., Seite e2207255
1. Verfasser: Wang, Qianqian (VerfasserIn)
Weitere Verfasser: Wang, Jiafang, Tokhtaeva, Elmira, Li, Zhen, Martín, Martín G, Ling, Xuefeng B, Dunn, James C Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article intestinal smooth muscle regeneration intestinal tissue engineering living building blocks Biological Factors
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
The intestinal muscle layers execute various gut wall movements to achieve controlled propulsion and mixing of intestinal content. Engineering intestinal muscle layers with complex contractile function is critical for developing bioartificial intestinal tissue to treat patients with short bowel syndrome. Here, the first demonstration of a living intestinal muscle patch capable of generating three distinct motility patterns and displaying multiple digesta manipulations is reported. Assessment of contractility, cellular morphology, and transcriptome profile reveals that successful generation of the contracting muscle patch relies on both biological factors in a serum-free medium and environmental cues from an elastic electrospun gelatin scaffold. By comparing gene-expression patterns among samples, it is shown that biological factors from the medium strongly affect ion-transport activities, while the scaffold unexpectedly regulates cell-cell communication. Analysis of ligandreceptor interactome identifies scaffold-driven changes in intercellular communication, and 78% of the upregulated ligand-receptor interactions are involved in the development and function of enteric neurons. The discoveries highlight the importance of combining biomolecular and biomaterial approaches for tissue engineering. The living intestinal muscle patch represents a pivotal advancement for building functional replacement intestinal tissue. It offers a more physiological model for studying GI motility and for preclinical drug discovery
Beschreibung:Date Completed 14.04.2023
Date Revised 02.04.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202207255