MIL-88B(Fe) MOF modified screen-printed electrodes for non-enzymatic electrochemical sensing of malathion
An enzyme-free electrochemical approach for ultra-trace quantification of the organophosphate insecticide malathion is proposed in this study. It is premised on screen-printed carbon electrodes modified by the MIL-88B(Fe) metal-organic framework (MOF). A one-pot solvothermal method was used to synth...
Veröffentlicht in: | Environmental technology. - 1993. - 45(2024), 13 vom: 01. Mai, Seite 2649-2659 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Electrocatalytic material In-situ application Metal-organic framework Organophosphate assay Square wave voltammetry Malathion U5N7SU872W Metal-Organic Frameworks Insecticides |
Zusammenfassung: | An enzyme-free electrochemical approach for ultra-trace quantification of the organophosphate insecticide malathion is proposed in this study. It is premised on screen-printed carbon electrodes modified by the MIL-88B(Fe) metal-organic framework (MOF). A one-pot solvothermal method was used to synthesise MIL-88B(Fe). The surface modification of electrodes allowed for increased electroactive surface area and accelerated electron transport on the electrode. Inhibition in the redox signal of MIL-88B(Fe) was observed due to the affinity between metal centres of the MOF and the functional groups of malathion, leading to an accurate determination of malathion. The proposed sensor effectively quantified malathion in the wide concentration range of 1 × 10-12 M to 1 × 10-6 M. The limit of detection for malathion was 0.79 pM. The proposed sensor also possessed excellent stability, repeatability, and anti-interference characteristics. Furthermore, the proposed sensor demonstrated satisfactory malathion recovery in spiked vegetable samples |
---|---|
Beschreibung: | Date Completed 09.05.2024 Date Revised 09.05.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2023.2179946 |