Magnaporthe oryzae endoplasmic reticulum membrane complex regulates the biogenesis of membrane proteins for pathogenicity

© 2023 The Authors New Phytologist © 2023 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 238(2023), 3 vom: 25. Mai, Seite 1163-1181
1. Verfasser: Liu, Ning (VerfasserIn)
Weitere Verfasser: Huang, Manna, Liang, Xinyuan, Cao, Miao, Lun, Zhiqin, Zhang, Yan, Yang, Jun, Bhadauria, Vijai, Zhao, Wensheng, Yan, Jiye, Peng, You-Liang, Lu, Xunli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Atg9 Chs4 Fks1 Magnaporthe oryzae Mnr2 MoEmc5 cell wall integrity magnesium transport mehr... Fungal Proteins Membrane Proteins Magnesium I38ZP9992A
Beschreibung
Zusammenfassung:© 2023 The Authors New Phytologist © 2023 New Phytologist Foundation.
In eukaryotes, the majority of newly synthesized integral membrane proteins are inserted into the endoplasmic reticulum (ER) membrane before transferred to their functional sites. The conserved ER membrane complex (EMC) takes part in the insertion process for tail-anchored membrane proteins. However, the function of EMC in phytopathogenic fungi has not been characterized. Here, we report the identification and functional characterization of two EMC subunits MoEmc5 and MoEmc2 in Magnaporthe oryzae. The knockout mutants ΔMoemc5 and ΔMoemc2 exhibit substantial defect in autophagy, pathogenicity, cell wall integrity, and magnesium ion sensitivity. We demonstrate that the autophagy process was severely impaired in the ΔMoemc5 and ΔMoemc2 mutants because of the low-protein steady-state level of Atg9, the sole membrane-associated autophagy protein. Furthermore, the protein level of membrane proteins Chs4, Fks1, and MoMnr2 is also significantly reduced in the ΔMoemc5 and ΔMoemc2 strains, leading to their supersensitivity to Calcofluor white, Congo red, and magnesium. In addition, MoEmc5, but not MoEmc2, acts as a magnesium transporter independent of its EMC function. Magnaporthe oryzae EMC regulates the biogenesis of membrane proteins for autophagy and virulence; therefore, EMC subunits could be potential targets for fungicide design in the future
Beschreibung:Date Completed 31.03.2023
Date Revised 13.04.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.18810