Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption

Copyright © 2023 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 159(2023) vom: 15. März, Seite 146-153
1. Verfasser: Patel, Savankumar (VerfasserIn)
Weitere Verfasser: Hedayati Marzbali, Mojtaba, Hakeem, Ibrahim Gbolahan, Veluswamy, Ganesh, Rathnayake, Nimesha, Nahar, Kamrun, Agnihotri, Shivani, Bergmann, David, Surapaneni, Aravind, Gupta, Rajender, Sharma, Abhishek, Shah, Kalpit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Biogas Biosolids-biochar Carbon nanomaterials Circular economy Hydrogen PFAS biochar ilmenite 12168-52-4 mehr... Biosolids Biofuels Carbon Dioxide 142M471B3J Charcoal 16291-96-6 Wastewater Carbon 7440-44-0 7YNJ3PO35Z Fluorocarbons
LEADER 01000caa a22002652c 4500
001 NLM352739975
003 DE-627
005 20250304100304.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2023.01.037  |2 doi 
028 5 2 |a pubmed25n1175.xml 
035 |a (DE-627)NLM352739975 
035 |a (NLM)36764239 
035 |a (PII)S0956-053X(23)00157-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Patel, Savankumar  |e verfasserin  |4 aut 
245 1 0 |a Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.02.2023 
500 |a Date Revised 23.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 Elsevier Ltd. All rights reserved. 
520 |a Anaerobic digestion is a popular unit operation in wastewater treatment to degrade organic contaminants, thereby generating biogas (methane-rich gas stream). Catalytic decomposition of the biogas could be a promising upcycling approach to produce renewable hydrogen and sequester carbon in the form of carbon nanomaterials (CNMs). Biosolids are solid waste generated during the wastewater treatment process, which can be valorised to biochar via pyrolysis. This work demonstrates the use of biosolids-derived biochar compared with ilmenite as catalysts for biogas decomposition to hydrogen and CNMs. Depending on the reaction time, biosolids-derived biochar achieved a CH4 and CO2 conversion of 50-70 % and 70-90 % at 900 °C with a weight hourly space velocity (WHSV) of 1.2 Lg-1h-1. The high conversion rate was attributed to the formation of amorphous carbon on the biochar surface, where the carbon deposits acted as catalysts and substrates for the further decomposition of CH4 and CO2. Morphological characterisation of biochar after biogas decomposition revealed the formation of high-quality carbon nanospheres (200-500 nm) and carbon nanofibres (10-100 nm) on its surface. XRD pattern and Raman spectroscopy also signified the presence of graphitic structures with ID/IG ratio of 1.19, a reduction from 1.33 in the pristine biochar. Finally, the produced CNM-loaded biochar was tested for PFAS adsorption from contaminated wastewater. A removal efficiency of 79 % was observed for CNM-coated biochar which was 10-60 % higher than using biochar and ilmenite alone. This work demonstrated an integrated approach for upcycling waste streams generated in wastewater treatment facilities 
650 4 |a Journal Article 
650 4 |a Biogas 
650 4 |a Biosolids-biochar 
650 4 |a Carbon nanomaterials 
650 4 |a Circular economy 
650 4 |a Hydrogen 
650 4 |a PFAS 
650 7 |a biochar  |2 NLM 
650 7 |a ilmenite  |2 NLM 
650 7 |a 12168-52-4  |2 NLM 
650 7 |a Biosolids  |2 NLM 
650 7 |a Biofuels  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Charcoal  |2 NLM 
650 7 |a 16291-96-6  |2 NLM 
650 7 |a Wastewater  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Hydrogen  |2 NLM 
650 7 |a 7YNJ3PO35Z  |2 NLM 
650 7 |a Fluorocarbons  |2 NLM 
700 1 |a Hedayati Marzbali, Mojtaba  |e verfasserin  |4 aut 
700 1 |a Hakeem, Ibrahim Gbolahan  |e verfasserin  |4 aut 
700 1 |a Veluswamy, Ganesh  |e verfasserin  |4 aut 
700 1 |a Rathnayake, Nimesha  |e verfasserin  |4 aut 
700 1 |a Nahar, Kamrun  |e verfasserin  |4 aut 
700 1 |a Agnihotri, Shivani  |e verfasserin  |4 aut 
700 1 |a Bergmann, David  |e verfasserin  |4 aut 
700 1 |a Surapaneni, Aravind  |e verfasserin  |4 aut 
700 1 |a Gupta, Rajender  |e verfasserin  |4 aut 
700 1 |a Sharma, Abhishek  |e verfasserin  |4 aut 
700 1 |a Shah, Kalpit  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 159(2023) vom: 15. März, Seite 146-153  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:159  |g year:2023  |g day:15  |g month:03  |g pages:146-153 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2023.01.037  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 159  |j 2023  |b 15  |c 03  |h 146-153