A Sandwich Structure of Fulvic Acid and PMIDA-Modified LDHs for the Simultaneous Removal of Cu2+ and Aniline in Multicomponent Solutions
The coexistence of organic and inorganic pollutants in industrial wastewater has emerged as a concerning environmental issue worldwide due to the critical levels of biological toxicity of these pollutants. In this context, the present study proposes a sandwich structure of fulvic acid and PMIDA-modi...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 39(2023), 7 vom: 21. Feb., Seite 2537-2547 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The coexistence of organic and inorganic pollutants in industrial wastewater has emerged as a concerning environmental issue worldwide due to the critical levels of biological toxicity of these pollutants. In this context, the present study proposes a sandwich structure of fulvic acid and PMIDA-modified LDHs (FA/PMIDA-LDHs) for the simultaneous removal of Cu2+ and aniline from wastewater. The specific structure was synthesized using a combination of coprecipitation and impregnation methods. Abundant benzene rings and oxygen-containing functional groups greatly increased the number of sites for the adsorption of both Cu2+ and aniline. The maximum adsorption capacity of Cu2+ and aniline in solution with initial pH 5.0 at 25 °C could reach 221.24 and 132.28 mg/g, respectively. Cu2+ could be chelated by the functional groups in the FA/PMIDA-LDHs structure, and a coupled reduction-complexation mechanism was proposed for this process. The uptake of aniline on FA/PMIDA-LDHs was demonstrated to be a result of the combination of coordination forces, hydrophobic effects, π-π interactions, and hydrogen bonds. In a multicomponent solution, FA/PMIDA-LDHs exhibited excellent salt tolerance of up to 1000 mg/L of Na+ or Ca2+. The effects of Fe3+, Ni2+, Cl-, Cr2O72-, SO42-, and H2PO4- on the uptakes of Cu2+ and aniline were also investigated |
---|---|
Beschreibung: | Date Completed 22.02.2023 Date Revised 22.02.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02724 |