An expert-based system to predict population survival rate from health data

© 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 38(2024), 1 vom: 07. Feb., Seite e14073
1. Verfasser: Schwacke, Lori H (VerfasserIn)
Weitere Verfasser: Thomas, Len, Wells, Randall S, Rowles, Teresa K, Bossart, Gregory D, Townsend, Forrest Jr, Mazzoil, Marilyn, Allen, Jason B, Balmer, Brian C, Barleycorn, Aaron A, Barratclough, Ashley, Burt, Louise, De Guise, Sylvain, Fauquier, Deborah, Gomez, Forrest M, Kellar, Nicholas M, Schwacke, John H, Speakman, Todd R, Stolen, Eric D, Quigley, Brian M, Zolman, Eric S, Smith, Cynthia R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't biomarcadores biomarker delfín dolphin health assessment monitoreo de fauna supervivencia survival mehr... tasa de vitalidad valoración sanitaria vital rate wildlife monitoring
LEADER 01000caa a22002652 4500
001 NLM352618973
003 DE-627
005 20240521233926.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.14073  |2 doi 
028 5 2 |a pubmed24n1414.xml 
035 |a (DE-627)NLM352618973 
035 |a (NLM)36751981 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schwacke, Lori H  |e verfasserin  |4 aut 
245 1 3 |a An expert-based system to predict population survival rate from health data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.01.2024 
500 |a Date Revised 20.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 
520 |a Timely detection and understanding of causes for population decline are essential for effective wildlife management and conservation. Assessing trends in population size has been the standard approach, but we propose that monitoring population health could prove more effective. We collated data from 7 bottlenose dolphin (Tursiops truncatus) populations in the southeastern United States to develop a method for estimating survival probability based on a suite of health measures identified by experts as indices for inflammatory, metabolic, pulmonary, and neuroendocrine systems. We used logistic regression to implement the veterinary expert system for outcome prediction (VESOP) within a Bayesian analysis framework. We fitted parameters with records from 5 of the sites that had a robust network of responders to marine mammal strandings and frequent photographic identification surveys that documented definitive survival outcomes. We also conducted capture-mark-recapture (CMR) analyses of photographic identification data to obtain separate estimates of population survival rates for comparison with VESOP survival estimates. The VESOP analyses showed that multiple measures of health, particularly markers of inflammation, were predictive of 1- and 2-year individual survival. The highest mortality risk 1 year following health assessment related to low alkaline phosphatase (odds ratio [OR] = 10.2 [95% CI: 3.41-26.8]), whereas 2-year mortality was most influenced by elevated globulin (OR = 9.60 [95% CI: 3.88-22.4]); both are markers of inflammation. The VESOP model predicted population-level survival rates that correlated with estimated survival rates from CMR analyses for the same populations (1-year Pearson's r = 0.99, p = 1.52 × 10-5 ; 2-year r = 0.94, p = 0.001). Although our proposed approach will not detect acute mortality threats that are largely independent of animal health, such as harmful algal blooms, it can be used to detect chronic health conditions that increase mortality risk. Random sampling of the population is important and advancement in remote sampling methods could facilitate more random selection of subjects, obtainment of larger sample sizes, and extension of the approach to other wildlife species 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a biomarcadores 
650 4 |a biomarker 
650 4 |a delfín 
650 4 |a dolphin 
650 4 |a health assessment 
650 4 |a monitoreo de fauna 
650 4 |a supervivencia 
650 4 |a survival 
650 4 |a tasa de vitalidad 
650 4 |a valoración sanitaria 
650 4 |a vital rate 
650 4 |a wildlife monitoring 
700 1 |a Thomas, Len  |e verfasserin  |4 aut 
700 1 |a Wells, Randall S  |e verfasserin  |4 aut 
700 1 |a Rowles, Teresa K  |e verfasserin  |4 aut 
700 1 |a Bossart, Gregory D  |e verfasserin  |4 aut 
700 1 |a Townsend, Forrest  |c Jr  |e verfasserin  |4 aut 
700 1 |a Mazzoil, Marilyn  |e verfasserin  |4 aut 
700 1 |a Allen, Jason B  |e verfasserin  |4 aut 
700 1 |a Balmer, Brian C  |e verfasserin  |4 aut 
700 1 |a Barleycorn, Aaron A  |e verfasserin  |4 aut 
700 1 |a Barratclough, Ashley  |e verfasserin  |4 aut 
700 1 |a Burt, Louise  |e verfasserin  |4 aut 
700 1 |a De Guise, Sylvain  |e verfasserin  |4 aut 
700 1 |a Fauquier, Deborah  |e verfasserin  |4 aut 
700 1 |a Gomez, Forrest M  |e verfasserin  |4 aut 
700 1 |a Kellar, Nicholas M  |e verfasserin  |4 aut 
700 1 |a Schwacke, John H  |e verfasserin  |4 aut 
700 1 |a Speakman, Todd R  |e verfasserin  |4 aut 
700 1 |a Stolen, Eric D  |e verfasserin  |4 aut 
700 1 |a Quigley, Brian M  |e verfasserin  |4 aut 
700 1 |a Zolman, Eric S  |e verfasserin  |4 aut 
700 1 |a Smith, Cynthia R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1999  |g 38(2024), 1 vom: 07. Feb., Seite e14073  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:38  |g year:2024  |g number:1  |g day:07  |g month:02  |g pages:e14073 
856 4 0 |u http://dx.doi.org/10.1111/cobi.14073  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2024  |e 1  |b 07  |c 02  |h e14073