Oil-Water Separation using Synthetic Trees
Existing oil-water filtration techniques require gravity or a pump as the driving force for separation. Here, we demonstrate transpiration-powered oil-water filtration using a synthetic tree, which operates pumplessly and against gravity. From top to bottom, our synthetic tree was composed of: a nan...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 7 vom: 21. Feb., Seite 2520-2528 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Existing oil-water filtration techniques require gravity or a pump as the driving force for separation. Here, we demonstrate transpiration-powered oil-water filtration using a synthetic tree, which operates pumplessly and against gravity. From top to bottom, our synthetic tree was composed of: a nanoporous "leaf" to generate suction via evaporation, a vertical array of glass tubes serving as the tree's xylem conduits, and filters attached to the tube inlets to act as the oil-excluding roots. When placing the tree in an oil emulsion bath, filtrate samples were measured to be 97-98% pure water using gravimetry and refractometry. The spontaneous oil-water separation offered by synthetic trees could be useful for applications such as oil spill cleanup, wastewater purification, and oil extraction |
---|---|
Beschreibung: | Date Completed 22.02.2023 Date Revised 22.02.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02713 |