Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils

© 2023 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 7 vom: 13. Apr., Seite 1951-1970
1. Verfasser: AminiTabrizi, Roya (VerfasserIn)
Weitere Verfasser: Graf-Grachet, Nathalia, Chu, Rosalie K, Toyoda, Jason G, Hoyt, David W, Hamdan, Rasha, Wilson, Rachel M, Tfaily, Malak M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article CO2 and CH4 emissions elevated temperatures high-resolution mass spectrometry microbial adaptations multi-omics peatlands soil organic matter sulfate deposition Greenhouse Gases mehr... Soil Sulfates Carbon Dioxide 142M471B3J Methane OP0UW79H66 Nitrous Oxide K50XQU1029
LEADER 01000naa a22002652 4500
001 NLM352507349
003 DE-627
005 20231226053900.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16614  |2 doi 
028 5 2 |a pubmed24n1174.xml 
035 |a (DE-627)NLM352507349 
035 |a (NLM)36740729 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a AminiTabrizi, Roya  |e verfasserin  |4 aut 
245 1 0 |a Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2023 
500 |a Date Revised 26.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 John Wiley & Sons Ltd. 
520 |a Peatlands are among the largest natural sources of atmospheric methane (CH4 ) worldwide. Microbial processes play a key role in regulating CH4 emissions from peatland ecosystems, yet the complex interplay between soil substrates and microbial communities in controlling CH4 emissions as a function of global change remains unclear. Herein, we performed an integrated analysis of multi-omics data sets to provide a comprehensive understanding of the molecular processes driving changes in greenhouse gas (GHG) emissions in peatland ecosystems with increasing temperature and sulfate deposition in a laboratory incubation study. We sought to first investigate how increasing temperatures (4, 21, and 35°C) impact soil microbiome-metabolome interactions; then explore the competition between methanogens and sulfate-reducing bacteria (SRBs) with increasing sulfate concentrations at the optimum temperature for methanogenesis. Our results revealed that peat soil organic matter degradation, mediated by biotic and potentially abiotic processes, is the main driver of the increase in CO2 production with temperature. In contrast, the decrease in CH4 production at 35°C was linked to the absence of syntrophic communities and the potential inhibitory effect of phenols on methanogens. Elevated temperatures further induced the microbial communities to develop high growth yield and stress tolerator trait-based strategies leading to a shift in their composition and function. On the other hand, SRBs were able to outcompete methanogens in the presence of non-limiting sulfate concentrations at 21°C, thereby reducing CH4 emissions. At higher sulfate concentrations, however, the prevalence of communities capable of producing sufficient low-molecular-weight carbon substrates for the coexistence of SRBs and methanogens was translated into elevated CH4 emissions. The use of omics in this study enhanced our understanding of the structure and interactions among microbes with the abiotic components of the system that can be useful for mitigating GHG emissions from peatland ecosystems in the face of global change 
650 4 |a Journal Article 
650 4 |a CO2 and CH4 emissions 
650 4 |a elevated temperatures 
650 4 |a high-resolution mass spectrometry 
650 4 |a microbial adaptations 
650 4 |a multi-omics 
650 4 |a peatlands 
650 4 |a soil organic matter 
650 4 |a sulfate deposition 
650 7 |a Greenhouse Gases  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Sulfates  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
650 7 |a Nitrous Oxide  |2 NLM 
650 7 |a K50XQU1029  |2 NLM 
700 1 |a Graf-Grachet, Nathalia  |e verfasserin  |4 aut 
700 1 |a Chu, Rosalie K  |e verfasserin  |4 aut 
700 1 |a Toyoda, Jason G  |e verfasserin  |4 aut 
700 1 |a Hoyt, David W  |e verfasserin  |4 aut 
700 1 |a Hamdan, Rasha  |e verfasserin  |4 aut 
700 1 |a Wilson, Rachel M  |e verfasserin  |4 aut 
700 1 |a Tfaily, Malak M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 7 vom: 13. Apr., Seite 1951-1970  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:7  |g day:13  |g month:04  |g pages:1951-1970 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16614  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 7  |b 13  |c 04  |h 1951-1970