|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM352482974 |
003 |
DE-627 |
005 |
20231226053827.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erad044
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1174.xml
|
035 |
|
|
|a (DE-627)NLM352482974
|
035 |
|
|
|a (NLM)36738278
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sierra, Julio
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Plastids
|b diving into their diversity, their functions, and their role in plant development
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.04.2023
|
500 |
|
|
|a Date Revised 04.06.2023
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
|
520 |
|
|
|a Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Development
|
650 |
|
4 |
|a differentiation
|
650 |
|
4 |
|a pathogen defense
|
650 |
|
4 |
|a plastids
|
650 |
|
4 |
|a retrograde signaling
|
650 |
|
4 |
|a stress
|
700 |
1 |
|
|a Escobar-Tovar, Lina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leon, Patricia
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 74(2023), 8 vom: 18. Apr., Seite 2508-2526
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:74
|g year:2023
|g number:8
|g day:18
|g month:04
|g pages:2508-2526
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erad044
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 74
|j 2023
|e 8
|b 18
|c 04
|h 2508-2526
|