Federated learning based Covid-19 detection

© 2022 The Authors. Expert Systems published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems. - 1998. - (2022) vom: 02. Nov., Seite e13173
1. Verfasser: Chowdhury, Deepraj (VerfasserIn)
Weitere Verfasser: Banerjee, Soham, Sannigrahi, Madhushree, Chakraborty, Arka, Das, Anik, Dey, Ajoy, Dwivedi, Ashutosh Dhar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems
Schlagworte:Journal Article COVID‐19 CXR images Internet of Medical Things (IoMT) Xception cybersecurity federated learning privacy transfer learning
LEADER 01000caa a22002652 4500
001 NLM352285982
003 DE-627
005 20240911232226.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/exsy.13173  |2 doi 
028 5 2 |a pubmed24n1530.xml 
035 |a (DE-627)NLM352285982 
035 |a (NLM)36718211 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chowdhury, Deepraj  |e verfasserin  |4 aut 
245 1 0 |a Federated learning based Covid-19 detection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2022 The Authors. Expert Systems published by John Wiley & Sons Ltd. 
520 |a The world is affected by COVID-19, an infectious disease caused by the SARS-CoV-2 virus. Tests are necessary for everyone as the number of COVID-19 affected individual's increases. So, the authors developed a basic sequential CNN model based on deep and federated learning that focuses on user data security while simultaneously enhancing test accuracy. The proposed model helps users detect COVID-19 in a few seconds by uploading a single chest X-ray image. A deep learning-aided architecture that can handle client and server sides efficiently has been proposed in this work. The front-end part has been developed using StreamLit, and the back-end uses a Flower framework. The proposed model has achieved a global accuracy of 99.59% after being trained for three federated communication rounds. The detailed analysis of this paper provides the robustness of this work. In addition, the Internet of Medical Things (IoMT) will improve the ease of access to the aforementioned health services. IoMT tools and services are rapidly changing healthcare operations for the better. Hopefully, it will continue to do so in this difficult time of the COVID-19 pandemic and will help to push the envelope of this work to a different extent 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a CXR images 
650 4 |a Internet of Medical Things (IoMT) 
650 4 |a Xception 
650 4 |a cybersecurity 
650 4 |a federated learning 
650 4 |a privacy 
650 4 |a transfer learning 
700 1 |a Banerjee, Soham  |e verfasserin  |4 aut 
700 1 |a Sannigrahi, Madhushree  |e verfasserin  |4 aut 
700 1 |a Chakraborty, Arka  |e verfasserin  |4 aut 
700 1 |a Das, Anik  |e verfasserin  |4 aut 
700 1 |a Dey, Ajoy  |e verfasserin  |4 aut 
700 1 |a Dwivedi, Ashutosh Dhar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems  |d 1998  |g (2022) vom: 02. Nov., Seite e13173  |w (DE-627)NLM098187341  |x 1468-0394  |7 nnns 
773 1 8 |g year:2022  |g day:02  |g month:11  |g pages:e13173 
856 4 0 |u http://dx.doi.org/10.1111/exsy.13173  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2022  |b 02  |c 11  |h e13173