Flexible Zinc-Air Batteries with Ampere-Hour Capacities and Wide-Temperature Adaptabilities
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 13 vom: 04. März, Seite e2209980 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article broad temperature range flexible zinc-air batteries hydrogels ionic liquids wearable electronics |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. Flexible Zn-air batteries (FZABs) have significant potentials as efficient energy storage devices for wearable electronics because of their safeties and high energy-to-cost ratios. However, their application is limited by their short cycle lives, low discharge capacities per cycle, and high charge/discharge polarizations. Accordingly, herein, a poly(sodium acrylate)-polyvinyl alcohol (PANa-PVA)-ionic liquid (IL) hydrogel (PANa-PVA-IL) is prepared using a hygroscopic IL, 1-ethyl-3-methylimidazolium chloride, as an additive for twin-chain PANa-PVA. PANa-PVA-IL exhibits a high conductivity of 306.9 mS cm-1 and a water uptake of 2515 wt% at room temperature. Moreover, a low-cost bifunctional catalyst, namely, Co9 S8 nanoparticles anchored on N- and S-co-doped activated carbon black pearls 2000 (Co9 S8 -NSABP), is synthesized, which demonstrates a low O2 reversibility potential gap of 0.629 V. FZABs based on PANa-PVA-IL and Co9 S8 -NSABP demonstrate high discharge capacities of 1.67 mAh cm-2 per cycle and long cycle lives of 330 h. Large-scale flexible rechargeable Zn-air pouch cells exhibit total capacities of 1.03 Ah and energy densities of 246 Wh kgcell -1 . This study provides new information about hydrogels with high ionic conductivities and water uptakes and should facilitate the application of FZABs in wearable electronics |
---|---|
Beschreibung: | Date Completed 29.03.2023 Date Revised 29.03.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202209980 |