COVID-19 lung infection segmentation from chest CT images based on CAPA-ResUNet

© 2022 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 33(2023), 1 vom: 21. Jan., Seite 6-17
1. Verfasser: Ma, Lu (VerfasserIn)
Weitere Verfasser: Song, Shuni, Guo, Liting, Tan, Wenjun, Xu, Lisheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article COVID‐19 area loss function computed tomography (CT) image segmentation deep learning pre‐activated residual block
LEADER 01000caa a22002652c 4500
001 NLM352234377
003 DE-627
005 20250304090343.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22819  |2 doi 
028 5 2 |a pubmed25n1173.xml 
035 |a (DE-627)NLM352234377 
035 |a (NLM)36713026 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Lu  |e verfasserin  |4 aut 
245 1 0 |a COVID-19 lung infection segmentation from chest CT images based on CAPA-ResUNet 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a Coronavirus disease 2019 (COVID-19) epidemic has devastating effects on personal health around the world. It is significant to achieve accurate segmentation of pulmonary infection regions, which is an early indicator of disease. To solve this problem, a deep learning model, namely, the content-aware pre-activated residual UNet (CAPA-ResUNet), was proposed for segmenting COVID-19 lesions from CT slices. In this network, the pre-activated residual block was used for down-sampling to solve the problems of complex foreground and large fluctuations of distribution in datasets during training and to avoid gradient disappearance. The area loss function based on the false segmentation regions was proposed to solve the problem of fuzzy boundary of the lesion area. This model was evaluated by the public dataset (COVID-19 Lung CT Lesion Segmentation Challenge-2020) and compared its performance with those of classical models. Our method gains an advantage over other models in multiple metrics. Such as the Dice coefficient, specificity (Spe), and intersection over union (IoU), our CAPA-ResUNet obtained 0.775 points, 0.972 points, and 0.646 points, respectively. The Dice coefficient of our model was 2.51% higher than Content-aware residual UNet (CARes-UNet). The code is available at https://github.com/malu108/LungInfectionSeg 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a area loss function 
650 4 |a computed tomography (CT) image segmentation 
650 4 |a deep learning 
650 4 |a pre‐activated residual block 
700 1 |a Song, Shuni  |e verfasserin  |4 aut 
700 1 |a Guo, Liting  |e verfasserin  |4 aut 
700 1 |a Tan, Wenjun  |e verfasserin  |4 aut 
700 1 |a Xu, Lisheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 33(2023), 1 vom: 21. Jan., Seite 6-17  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnas 
773 1 8 |g volume:33  |g year:2023  |g number:1  |g day:21  |g month:01  |g pages:6-17 
856 4 0 |u http://dx.doi.org/10.1002/ima.22819  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2023  |e 1  |b 21  |c 01  |h 6-17