Improving the Resistance of Molecularly Doped Polymer Semiconductor Layers to Solvent

© 2023 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 35(2023), 2 vom: 24. Jan., Seite 672-681
1. Verfasser: Lungwitz, Dominique (VerfasserIn)
Weitere Verfasser: Mansour, Ahmed E, Zhang, Yadong, Opitz, Andreas, Barlow, Stephen, Marder, Seth R, Koch, Norbert
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2023 The Authors. Published by American Chemical Society.
The ability to form multi-heterolayer (opto)electronic devices by solution processing of (molecularly doped) semiconducting polymer layers is of great interest since it can facilitate the fabrication of large-area and low-cost devices. However, the solution processing of multilayer devices poses a particular challenge with regard to dissolution of the first layer during the deposition of a second layer. Several approaches have been introduced to circumvent this problem for neat polymers, but suitable approaches for molecularly doped polymer semiconductors are much less well-developed. Here, we provide insights into two different mechanisms that can enhance the solvent resistance of solution-processed doped polymer layers while also retaining the dopants, one being the doping-induced pre-aggregation in solution and the other including the use of a photo-reactive agent that results in covalent cross-linking of the semiconductor and, perhaps in some cases, the dopant. For molecularly p-doped poly(3-hexylthiophene-2,5-diyl) and poly[2,5-bis(3-tetradecyl-thiophene-2-yl)thieno(3,2-b)thiophene] layers, we find that the formation of polymer chain aggregates prior to the deposition from solution plays a major role in enhancing solvent resistance. However, this pre-aggregation limits inclusion of the cross-linking agent benzene-1,3,5-triyl tris(4-azido-2,3,5,6-tetrafluorobenzoate). We show that if pre-aggregation in solution is suppressed, high resistance of thin doped polymer layers to solvent can be achieved using the tris(azide). Moreover, the electrical conductivity can be largely retained by increasing the tris(azide) content in a doped polymer layer
Beschreibung:Date Revised 05.01.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.2c03262