Machine-Learning-Assisted Nanozyme Design : Lessons from Materials and Engineered Enzymes

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 10 vom: 26. März, Seite e2210848
1. Verfasser: Zhuang, Jie (VerfasserIn)
Weitere Verfasser: Midgley, Adam C, Wei, Yonghua, Liu, Qiqi, Kong, Deling, Huang, Xinglu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review databases design machine learning nanozymes prediction Hydrolases EC 3.- Enzymes
LEADER 01000caa a22002652 4500
001 NLM352119349
003 DE-627
005 20240308231925.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202210848  |2 doi 
028 5 2 |a pubmed24n1320.xml 
035 |a (DE-627)NLM352119349 
035 |a (NLM)36701424 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuang, Jie  |e verfasserin  |4 aut 
245 1 0 |a Machine-Learning-Assisted Nanozyme Design  |b Lessons from Materials and Engineered Enzymes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2024 
500 |a Date Revised 08.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Nanozymes are nanomaterials that exhibit enzyme-like biomimicry. In combination with intrinsic characteristics of nanomaterials, nanozymes have broad applicability in materials science, chemical engineering, bioengineering, biochemistry, and disease theranostics. Recently, the heterogeneity of published results has highlighted the complexity and diversity of nanozymes in terms of consistency of catalytic capacity. Machine learning (ML) shows promising potential for discovering new materials, yet it remains challenging for the design of new nanozymes based on ML approaches. Alternatively, ML is employed to promote optimization of intelligent design and application of catalytic materials and engineered enzymes. Incorporation of the successful ML algorithms used in the intelligent design of catalytic materials and engineered enzymes can concomitantly facilitate the guided development of next-generation nanozymes with desirable properties. Here, recent progress in ML, its utilization in the design of catalytic materials and enzymes, and how emergent ML applications serve as promising strategies to circumvent challenges associated with time-expensive and laborious testing in nanozyme research and development are summarized. The potential applications of successful examples of ML-aided catalytic materials and engineered enzymes in nanozyme design are also highlighted, with special focus on the unified aims in enhancing design and recapitulation of substrate selectivity and catalytic activity 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a databases 
650 4 |a design 
650 4 |a machine learning 
650 4 |a nanozymes 
650 4 |a prediction 
650 7 |a Hydrolases  |2 NLM 
650 7 |a EC 3.-  |2 NLM 
650 7 |a Enzymes  |2 NLM 
700 1 |a Midgley, Adam C  |e verfasserin  |4 aut 
700 1 |a Wei, Yonghua  |e verfasserin  |4 aut 
700 1 |a Liu, Qiqi  |e verfasserin  |4 aut 
700 1 |a Kong, Deling  |e verfasserin  |4 aut 
700 1 |a Huang, Xinglu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 10 vom: 26. März, Seite e2210848  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:10  |g day:26  |g month:03  |g pages:e2210848 
856 4 0 |u http://dx.doi.org/10.1002/adma.202210848  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 10  |b 26  |c 03  |h e2210848