Response of nitrate leaching to no-tillage is dependent on soil, climate, and management factors : A global meta-analysis
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Publié dans: | Global change biology. - 1999. - 29(2023), 8 vom: 26. Apr., Seite 2172-2187 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | Global change biology |
Sujets: | Meta-Analysis Journal Article drainage no tillage review soil organic carbon Soil Nitrates Carbon 7440-44-0 plus... |
Résumé: | © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. No tillage (NT) has been proposed as a practice to reduce the adverse effects of tillage on contaminant (e.g., sediment and nutrient) losses to waterways. Nonetheless, previous reports on impacts of NT on nitrate ( NO 3 - ) leaching are inconsistent. A global meta-analysis was conducted to test the hypothesis that the response of NO 3 - leaching under NT, relative to tillage, is associated with tillage type (inversion vs non-inversion tillage), soil properties (e.g., soil organic carbon [SOC]), climate factors (i.e., water input), and management practices (e.g., NT duration and nitrogen fertilizer inputs). Overall, compared with all forms of tillage combined, NT had 4% and 14% greater area-scaled and yield-scaled NO 3 - leaching losses, respectively. The NO 3 - leaching under NT tended to be 7% greater than that of inversion tillage but comparable to non-inversion tillage. Greater NO 3 - leaching under NT, compared with inversion tillage, was most evident under short-duration NT (<5 years), where water inputs were low (<2 mm day-1 ), in medium texture and low SOC (<1%) soils, and at both higher (>200 kg ha-1 ) and lower (0-100 kg ha-1 ) rates of nitrogen addition. Of these, SOC was the most important factor affecting the risk of NO3 - leaching under NT compared with inversion tillage. Globally, on average, the greater amount of NO3 - leached under NT, compared with inversion tillage, was mainly attributed to corresponding increases in drainage. The percentage of global cropping land with lower risk of NO3 - leaching under NT, relative to inversion tillage, increased with NT duration from 3 years (31%) to 15 years (54%). This study highlighted that the benefits of NT adoption for mitigating NO 3 - leaching are most likely in long-term NT cropping systems on high-SOC soils |
---|---|
Description: | Date Completed 14.03.2023 Date Revised 26.05.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.16618 |