Bayesian approaches to variable selection in mixture models with application to disease clustering

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 2 vom: 30., Seite 387-407
1. Verfasser: Lu, Zihang (VerfasserIn)
Weitere Verfasser: Lou, Wendy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian growth mixture model clustering latent class non-linear growth trajectories variable selection
LEADER 01000caa a22002652c 4500
001 NLM352090529
003 DE-627
005 20250304084500.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1994529  |2 doi 
028 5 2 |a pubmed25n1173.xml 
035 |a (DE-627)NLM352090529 
035 |a (NLM)36698543 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Zihang  |e verfasserin  |4 aut 
245 1 0 |a Bayesian approaches to variable selection in mixture models with application to disease clustering 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.02.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In biomedical research, cluster analysis is often performed to identify patient subgroups based on patients' characteristics or traits. In the model-based clustering for identifying patient subgroups, mixture models have played a fundamental role in modeling. While there is an increasing interest in using mixture modeling for identifying patient subgroups, little work has been done in selecting the predictors that are associated with the class assignment. In this study, we develop and compare two approaches to perform variable selection in the context of a mixture model to identify important predictors that are associated with the class assignment. These two approaches are the one-step approach and the stepwise approach. The former refers to an approach in which clustering and variable selection are performed simultaneously in one overall model, whereas the latter refers to an approach in which clustering and variable selection are performed in two sequential steps. We considered both shrinkage prior and spike-and-slab prior to select the importance of variables. Markov chain Monte Carlo algorithms are developed to estimate the posterior distribution of the model parameters. Practical applications and simulation studies are carried out to evaluate the clustering and variable selection performance of the proposed models 
650 4 |a Journal Article 
650 4 |a Bayesian growth mixture model 
650 4 |a clustering 
650 4 |a latent class 
650 4 |a non-linear growth trajectories 
650 4 |a variable selection 
700 1 |a Lou, Wendy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 2 vom: 30., Seite 387-407  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:2  |g day:30  |g pages:387-407 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1994529  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 2  |b 30  |h 387-407