Meloidogyne graminicola Population Structure in China Suggests a South-to-North Expansion

The distribution range of root-knot nematode Meloidogyne graminicola is rapidly expanding, posing a severe threat to rice production. In this study, the sequences of cytochrome oxidase subunit I (COI) genes of rice M. graminicola populations from all reported provinces in China were amplified and se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 107(2023), 7 vom: 23. Juli, Seite 2070-2080
1. Verfasser: Liu, Mao-Yan (VerfasserIn)
Weitere Verfasser: Shao, Hu-Die, Wu, Yang-Yan, Peng, De-Liang, Yu, Jing-Wen, Jia, Jian-Ping, Peng, Huan, Li, Chuan-Ren, Sulaiman, Abdulsalam, Yu, Xi-Yue, Li, Cai-Hong, Huang, Wen-Kun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Meloidogyne graminicola mitochondrial COI pathogen diversity population structure rice
LEADER 01000naa a22002652 4500
001 NLM352019514
003 DE-627
005 20231226052751.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-08-22-1796-RE  |2 doi 
028 5 2 |a pubmed24n1173.xml 
035 |a (DE-627)NLM352019514 
035 |a (NLM)36691277 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Mao-Yan  |e verfasserin  |4 aut 
245 1 0 |a Meloidogyne graminicola Population Structure in China Suggests a South-to-North Expansion 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.07.2023 
500 |a Date Revised 27.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The distribution range of root-knot nematode Meloidogyne graminicola is rapidly expanding, posing a severe threat to rice production. In this study, the sequences of cytochrome oxidase subunit I (COI) genes of rice M. graminicola populations from all reported provinces in China were amplified and sequenced by PCR. The distribution pattern and phylogenetic tree showed that all 54 M. graminicola populations in China have distinct geographical distribution characteristics; specifically, cluster 1 (southern China), cluster 2 (central south and southwest China), and cluster 3 (central and eastern China). The high haplotype diversity (Hd = 0.646) and low nucleotide diversity (π = 0.00682), combined with the negative value of Tajima's D (-1.252) and Fu's Fs (-3.06764), suggested that all nematode populations were expanding. The existence of high genetic differentiation (Fst = 0.5933) and low gene flow (Nm = 0.3333) indicated that there was a block of gene exchange between most populations. Mutation accumulation with population expansion might be directly responsible for the high genetic differentiation; therefore, the tested nematode population showed high within-group genetic variation (96.30%). The haplotype Hap8 was located at the bottom of the network topology, with the widest distribution and the highest frequency (59.26%), indicating that it was the ancestral haplotype. The populations in cluster 3 were newly invasive according to the lowest frequency of occurrence of Hap8, the highest number of endemic haplotypes, and the highest total haplotype frequency (60%). In contrast, cluster 1 having the highest genetic diversity (Hd = 0.772, π = 0.01127) indicated that it was the most primitive. Interestingly, the highest gene flow (Nm > 1), lowest genetic differentiation (Fst ≤ 0.33), and closest genetic distance (0.000) only occurred between the Guangdong/Hainan population and others, which suggested that there might be channels for gene exchange between them and that long-distance dispersal occurred. This suggestion is further confirmed by the weak correlation between genetic distance and geographical distance. Based on these data, a hypothesis can be drawn that M. graminicola populations in China were spreading from south to north, specifically from Guangdong and Hainan Provinces to other regions. Natural selection (including anthropogenic) and genetic drift were the main drivers of their evolution. Coincidentally, this hypothesis was consistent with the gradual warming trend and the chronological order of reporting these populations. The main factors influencing current M. graminicola population expansion and distribution patterns might be geography, climate, long-distance seedling transport, interregional operations of agricultural machinery, and rotation mode. It reminds human beings of the necessity to be vigilant about preventing nematode disease according to local conditions all year round 
650 4 |a Journal Article 
650 4 |a Meloidogyne graminicola 
650 4 |a mitochondrial COI 
650 4 |a pathogen diversity 
650 4 |a population structure 
650 4 |a rice 
700 1 |a Shao, Hu-Die  |e verfasserin  |4 aut 
700 1 |a Wu, Yang-Yan  |e verfasserin  |4 aut 
700 1 |a Peng, De-Liang  |e verfasserin  |4 aut 
700 1 |a Yu, Jing-Wen  |e verfasserin  |4 aut 
700 1 |a Jia, Jian-Ping  |e verfasserin  |4 aut 
700 1 |a Peng, Huan  |e verfasserin  |4 aut 
700 1 |a Li, Chuan-Ren  |e verfasserin  |4 aut 
700 1 |a Sulaiman, Abdulsalam  |e verfasserin  |4 aut 
700 1 |a Yu, Xi-Yue  |e verfasserin  |4 aut 
700 1 |a Li, Cai-Hong  |e verfasserin  |4 aut 
700 1 |a Huang, Wen-Kun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 107(2023), 7 vom: 23. Juli, Seite 2070-2080  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:107  |g year:2023  |g number:7  |g day:23  |g month:07  |g pages:2070-2080 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-08-22-1796-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 107  |j 2023  |e 7  |b 23  |c 07  |h 2070-2080