Fungicide Sensitivity of Sclerotinia sclerotiorum from U.S. Soybean and Dry Bean, Compared to Different Regions and Climates

Fungicide use is integral to reduce yield loss from Sclerotinia sclerotiorum on dry bean and soybean. Increasing fungicide use against this fungus may lead to resistance to the most common fungicides. Resistance has been reported in Brazil (Glycine max) and China (Brassica napus subsp. napus), howev...

Description complète

Détails bibliographiques
Publié dans:Plant disease. - 1997. - 107(2023), 8 vom: 23. Aug., Seite 2395-2406
Auteur principal: Nieto-Lopez, Edgar H (Auteur)
Autres auteurs: Miorini, Thomas Jose Justo, Wulkop-Gil, Cristian A, I Chilvers, Martin, Giesler, Loren J, Jackson-Ziems, Tamra A, Kabbage, Mehdi, Mueller, Daren S, Smith, Damon L, Tovar-Pedraza, Juan Manuel, Willbur, Jaime F, Everhart, Sydney E
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Plant disease
Sujets:Journal Article SdhC complex baseline boscalid commercial fields discriminatory concentration fungicide research trials picoxystrobin single mode-of-action tetraconazole plus... thiophanate-methyl Fungicides, Industrial 62DH7GEL1P 2-chloro-N-(4-chlorobiphenyl-2-yl)nicotinamide 32MS8ZRD1V 8FGY868T0G
LEADER 01000caa a22002652c 4500
001 NLM352019433
003 DE-627
005 20250304083520.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-07-22-1707-RE  |2 doi 
028 5 2 |a pubmed25n1173.xml 
035 |a (DE-627)NLM352019433 
035 |a (NLM)36691269 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nieto-Lopez, Edgar H  |e verfasserin  |4 aut 
245 1 0 |a Fungicide Sensitivity of Sclerotinia sclerotiorum from U.S. Soybean and Dry Bean, Compared to Different Regions and Climates 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2023 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Fungicide use is integral to reduce yield loss from Sclerotinia sclerotiorum on dry bean and soybean. Increasing fungicide use against this fungus may lead to resistance to the most common fungicides. Resistance has been reported in Brazil (Glycine max) and China (Brassica napus subsp. napus), however, few studies have investigated fungicide sensitivity of S. sclerotiorum in the United States. This work was conducted to determine if there was a difference in fungicide sensitivity of S. sclerotiorum isolates in the United States from: (i) dry bean versus soybean and (ii) fields with different frequencies of fungicide application. We further hypothesized that isolates with fungicide applications of a single active ingredient from tropical Brazil and subtropical Mexico were less sensitive than temperate U.S. isolates due to different management practices and climates. The EC50(D) fungicide sensitivity of 512 S. sclerotiorum isolates from the United States (443), Brazil (36), and Mexico (33) was determined using a discriminatory concentration (DC) previously identified for tetraconazole (2.0 ppm; EC50(D) range of 0.197 to 2.27 ppm), boscalid (0.2; 0.042 to 0.222), picoxystrobin (0.01; 0.006 to 0.027), and thiophanate-methyl, which had a qualitative DC of 10 ppm. Among the 10 least sensitive isolates to boscalid and picoxystrobin, 2 presented mutations known to confer resistance in the SdhB (qualitative) and SdhC (quantitative) genes; however, no strong resistance was found. This study established novel DCs that can be used for further resistance monitoring and baseline sensitivity of S. sclerotiorum to tetraconazole worldwide plus baseline sensitivity to boscalid in the United States 
650 4 |a Journal Article 
650 4 |a SdhC complex 
650 4 |a baseline 
650 4 |a boscalid 
650 4 |a commercial fields 
650 4 |a discriminatory concentration 
650 4 |a fungicide research trials 
650 4 |a picoxystrobin 
650 4 |a single mode-of-action 
650 4 |a tetraconazole 
650 4 |a thiophanate-methyl 
650 7 |a Fungicides, Industrial  |2 NLM 
650 7 |a picoxystrobin  |2 NLM 
650 7 |a 62DH7GEL1P  |2 NLM 
650 7 |a 2-chloro-N-(4-chlorobiphenyl-2-yl)nicotinamide  |2 NLM 
650 7 |a 32MS8ZRD1V  |2 NLM 
650 7 |a tetraconazole  |2 NLM 
650 7 |a 8FGY868T0G  |2 NLM 
700 1 |a Miorini, Thomas Jose Justo  |e verfasserin  |4 aut 
700 1 |a Wulkop-Gil, Cristian A  |e verfasserin  |4 aut 
700 1 |a I Chilvers, Martin  |e verfasserin  |4 aut 
700 1 |a Giesler, Loren J  |e verfasserin  |4 aut 
700 1 |a Jackson-Ziems, Tamra A  |e verfasserin  |4 aut 
700 1 |a Kabbage, Mehdi  |e verfasserin  |4 aut 
700 1 |a Mueller, Daren S  |e verfasserin  |4 aut 
700 1 |a Smith, Damon L  |e verfasserin  |4 aut 
700 1 |a Tovar-Pedraza, Juan Manuel  |e verfasserin  |4 aut 
700 1 |a Willbur, Jaime F  |e verfasserin  |4 aut 
700 1 |a Everhart, Sydney E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 107(2023), 8 vom: 23. Aug., Seite 2395-2406  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnas 
773 1 8 |g volume:107  |g year:2023  |g number:8  |g day:23  |g month:08  |g pages:2395-2406 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-07-22-1707-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 107  |j 2023  |e 8  |b 23  |c 08  |h 2395-2406