Rapid Data-Efficient Optimization of Perovskite Nanocrystal Syntheses through Machine Learning Algorithm Fusion

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 16 vom: 21. Apr., Seite e2208772
1. Verfasser: Lampe, Carola (VerfasserIn)
Weitere Verfasser: Kouroudis, Ioannis, Harth, Milan, Martin, Stefan, Gagliardi, Alessio, Urban, Alexander S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Bayesian optimization Gaussian processes data-efficient optimization halide perovskites machine learning nanocrystals photoluminescence
LEADER 01000naa a22002652 4500
001 NLM351925724
003 DE-627
005 20231226052548.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202208772  |2 doi 
028 5 2 |a pubmed24n1173.xml 
035 |a (DE-627)NLM351925724 
035 |a (NLM)36681859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lampe, Carola  |e verfasserin  |4 aut 
245 1 0 |a Rapid Data-Efficient Optimization of Perovskite Nanocrystal Syntheses through Machine Learning Algorithm Fusion 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.04.2023 
500 |a Date Revised 20.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a With the demand for renewable energy and efficient devices rapidly increasing, a need arises to find and optimize novel (nano)materials. With sheer limitless possibilities for material combinations and synthetic procedures, obtaining novel, highly functional materials has been a tedious trial and error process. Recently, machine learning has emerged as a powerful tool to help optimize syntheses; however, most approaches require a substantial amount of input data, limiting their pertinence. Here, three well-known machine-learning models are merged with Bayesian optimization into one to optimize the synthesis of CsPbBr3 nanoplatelets with limited data demand. The algorithm can accurately predict the photoluminescence emission maxima of nanoplatelet dispersions using only the three precursor ratios as input parameters. This allows us to fabricate previously unobtainable seven and eight monolayer-thick nanoplatelets. Moreover, the algorithm dramatically improves the homogeneity of 2-6-monolayer-thick nanoplatelet dispersions, as evidenced by narrower and more symmetric photoluminescence spectra. Decisively, only 200 total syntheses are required to achieve this vast improvement, highlighting how rapidly material properties can be optimized. The algorithm is highly versatile and can incorporate additional synthetic parameters. Accordingly, it is readily applicable to other less-explored nanocrystal syntheses and can help rapidly identify and improve exciting compositions' quality 
650 4 |a Journal Article 
650 4 |a Bayesian optimization 
650 4 |a Gaussian processes 
650 4 |a data-efficient optimization 
650 4 |a halide perovskites 
650 4 |a machine learning 
650 4 |a nanocrystals 
650 4 |a photoluminescence 
700 1 |a Kouroudis, Ioannis  |e verfasserin  |4 aut 
700 1 |a Harth, Milan  |e verfasserin  |4 aut 
700 1 |a Martin, Stefan  |e verfasserin  |4 aut 
700 1 |a Gagliardi, Alessio  |e verfasserin  |4 aut 
700 1 |a Urban, Alexander S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 16 vom: 21. Apr., Seite e2208772  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:16  |g day:21  |g month:04  |g pages:e2208772 
856 4 0 |u http://dx.doi.org/10.1002/adma.202208772  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 16  |b 21  |c 04  |h e2208772