Identifying socioeconomic and biophysical factors driving forest loss in protected areas

© 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 37(2023), 4 vom: 16. Aug., Seite e14058
1. Verfasser: Powlen, Kathryn A (VerfasserIn)
Weitere Verfasser: Salerno, Jonathan, Jones, Kelly W, Gavin, Michael C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Mexico México aprendizaje automático bosque aleatorio conservación conservation deforestación deforestation machine learning mehr... random forest 保护 墨西哥 机器学习 森林砍伐 随机森林
LEADER 01000naa a22002652 4500
001 NLM351718060
003 DE-627
005 20231226052041.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.14058  |2 doi 
028 5 2 |a pubmed24n1172.xml 
035 |a (DE-627)NLM351718060 
035 |a (NLM)36661056 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Powlen, Kathryn A  |e verfasserin  |4 aut 
245 1 0 |a Identifying socioeconomic and biophysical factors driving forest loss in protected areas 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2023 
500 |a Date Revised 01.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 
520 |a Protected areas (PAs) are a commonly used strategy to confront forest conversion and biodiversity loss. Although determining drivers of forest loss is central to conservation success, understanding of them is limited by conventional modeling assumptions. We used random forest regression to evaluate potential drivers of deforestation in PAs in Mexico, while accounting for nonlinear relationships and higher order interactions underlying deforestation processes. Socioeconomic drivers (e.g., road density, human population density) and underlying biophysical conditions (e.g., precipitation, distance to water, elevation, slope) were stronger predictors of forest loss than PA characteristics, such as age, type, and management effectiveness. Within PA characteristics, variables reflecting collaborative and equitable management and PA size were the strongest predictors of forest loss, albeit with less explanatory power than socioeconomic and biophysical variables. In contrast to previously used methods, which typically have been based on the assumption of linear relationships, we found that the associations between most predictors and forest loss are nonlinear. Our results can inform decisions on the allocation of PA resources by strengthening management in PAs with the highest risk of deforestation and help preemptively protect key biodiversity areas that may be vulnerable to deforestation in the future 
650 4 |a Journal Article 
650 4 |a Mexico 
650 4 |a México 
650 4 |a aprendizaje automático 
650 4 |a bosque aleatorio 
650 4 |a conservación 
650 4 |a conservation 
650 4 |a deforestación 
650 4 |a deforestation 
650 4 |a machine learning 
650 4 |a random forest 
650 4 |a 保护 
650 4 |a 墨西哥 
650 4 |a 机器学习 
650 4 |a 森林砍伐 
650 4 |a 随机森林 
700 1 |a Salerno, Jonathan  |e verfasserin  |4 aut 
700 1 |a Jones, Kelly W  |e verfasserin  |4 aut 
700 1 |a Gavin, Michael C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1999  |g 37(2023), 4 vom: 16. Aug., Seite e14058  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:37  |g year:2023  |g number:4  |g day:16  |g month:08  |g pages:e14058 
856 4 0 |u http://dx.doi.org/10.1111/cobi.14058  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2023  |e 4  |b 16  |c 08  |h e14058