Mutation of DEFECTIVE EMBRYO SAC1 results in a low seed-setting rate in rice by regulating embryo sac development
© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 74(2023), 5 vom: 13. März, Seite 1501-1516 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't OsDES1 Embryo sac female sterile fertilization rice seed-setting rate Membrane Proteins Plant Proteins |
Zusammenfassung: | © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. The seed-setting rate has a significant effect on grain yield in rice (Oryza sativa L.). Embryo sac development is essential for seed setting; however, the molecular mechanism underlying this process remains unclear. Here, we isolated defective embryo sac1 (des1), a rice mutant with a low seed-setting rate. Cytological examination showed degenerated embryo sacs and reduced fertilization capacity in des1. Map-based cloning revealed a nonsense mutation in OsDES1, a gene that encodes a putative nuclear envelope membrane protein (NEMP)-domain-containing protein that is preferentially expressed in pistils. The OsDES1 mutation disrupts the normal formation of functional megaspores, which ultimately results in a degenerated embryo sac in des1. Reciprocal crosses showed that fertilization is abnormal and that the female reproductive organ is defective in des1. OsDES1 interacts with LONELY GUY (LOG), a cytokinin-activating enzyme that acts in the final step of cytokinin synthesis; mutation of LOG led to defective female reproductive organ development. These results demonstrate that OsDES1 functions in determining the rice seed-setting rate by regulating embryo sac development and fertilization. Our study sheds light on the function of NEMP-type proteins in rice reproductive development |
---|---|
Beschreibung: | Date Completed 15.03.2023 Date Revised 04.04.2023 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erac506 |