|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM351591257 |
003 |
DE-627 |
005 |
20231226051740.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.27075
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1171.xml
|
035 |
|
|
|a (DE-627)NLM351591257
|
035 |
|
|
|a (NLM)36648254
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ma, Yingjin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Machine-learning assisted scheduling optimization and its application in quantum chemical calculations
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.03.2023
|
500 |
|
|
|a Date Revised 24.03.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley Periodicals LLC.
|
520 |
|
|
|a Easy and effective usage of computational resources is crucial for scientific calculations, both from the perspectives of timeliness and economic efficiency. This work proposes a bi-level optimization framework to optimize the computational sequences. Machine-learning (ML) assisted static load-balancing, and different dynamic load-balancing algorithms can be integrated. Consequently, the computational and scheduling engine of the ParaEngine is developed to invoke optimized quantum chemical (QC) calculations. Illustrated benchmark calculations include high-throughput drug suit, solvent model, P38 protein, and SARS-CoV-2 systems. The results show that the usage rate of given computational resources for high throughput and large-scale fragmentation QC calculations can primarily profit, and faster accomplishing computational tasks can be expected when employing high-performance computing (HPC) clusters
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a distributed computing
|
650 |
|
4 |
|a fragmentation approach
|
650 |
|
4 |
|a high throughput computing
|
650 |
|
4 |
|a interaction energy calculations
|
650 |
|
4 |
|a load-balancing
|
700 |
1 |
|
|a Li, ZhiYing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Bowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Ning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Teng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Baohua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Suo, BingBing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Zhong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 44(2023), 12 vom: 05. Mai, Seite 1174-1188
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2023
|g number:12
|g day:05
|g month:05
|g pages:1174-1188
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.27075
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2023
|e 12
|b 05
|c 05
|h 1174-1188
|