Machine-learning assisted scheduling optimization and its application in quantum chemical calculations

© 2023 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 12 vom: 05. Mai, Seite 1174-1188
1. Verfasser: Ma, Yingjin (VerfasserIn)
Weitere Verfasser: Li, ZhiYing, Chen, Xin, Ding, Bowen, Li, Ning, Lu, Teng, Zhang, Baohua, Suo, BingBing, Jin, Zhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article distributed computing fragmentation approach high throughput computing interaction energy calculations load-balancing
LEADER 01000naa a22002652 4500
001 NLM351591257
003 DE-627
005 20231226051740.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27075  |2 doi 
028 5 2 |a pubmed24n1171.xml 
035 |a (DE-627)NLM351591257 
035 |a (NLM)36648254 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Yingjin  |e verfasserin  |4 aut 
245 1 0 |a Machine-learning assisted scheduling optimization and its application in quantum chemical calculations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.03.2023 
500 |a Date Revised 24.03.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a Easy and effective usage of computational resources is crucial for scientific calculations, both from the perspectives of timeliness and economic efficiency. This work proposes a bi-level optimization framework to optimize the computational sequences. Machine-learning (ML) assisted static load-balancing, and different dynamic load-balancing algorithms can be integrated. Consequently, the computational and scheduling engine of the ParaEngine is developed to invoke optimized quantum chemical (QC) calculations. Illustrated benchmark calculations include high-throughput drug suit, solvent model, P38 protein, and SARS-CoV-2 systems. The results show that the usage rate of given computational resources for high throughput and large-scale fragmentation QC calculations can primarily profit, and faster accomplishing computational tasks can be expected when employing high-performance computing (HPC) clusters 
650 4 |a Journal Article 
650 4 |a distributed computing 
650 4 |a fragmentation approach 
650 4 |a high throughput computing 
650 4 |a interaction energy calculations 
650 4 |a load-balancing 
700 1 |a Li, ZhiYing  |e verfasserin  |4 aut 
700 1 |a Chen, Xin  |e verfasserin  |4 aut 
700 1 |a Ding, Bowen  |e verfasserin  |4 aut 
700 1 |a Li, Ning  |e verfasserin  |4 aut 
700 1 |a Lu, Teng  |e verfasserin  |4 aut 
700 1 |a Zhang, Baohua  |e verfasserin  |4 aut 
700 1 |a Suo, BingBing  |e verfasserin  |4 aut 
700 1 |a Jin, Zhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 12 vom: 05. Mai, Seite 1174-1188  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:12  |g day:05  |g month:05  |g pages:1174-1188 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27075  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 12  |b 05  |c 05  |h 1174-1188