Colloid Electrolyte with Changed Li+ Solvation Structure for High-Power, Low-Temperature Lithium-Ion Batteries

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 12 vom: 26. März, Seite e2209140
1. Verfasser: Wang, Xiaoyan (VerfasserIn)
Weitere Verfasser: Yang, Le, Ahmad, Niaz, Ran, Leguan, Shao, Ruiwen, Yang, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cathode electrolyte interface coordination environment electrolytes fast charging lithium-ion batteries
LEADER 01000naa a22002652 4500
001 NLM351452311
003 DE-627
005 20231226051412.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209140  |2 doi 
028 5 2 |a pubmed24n1171.xml 
035 |a (DE-627)NLM351452311 
035 |a (NLM)36634272 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xiaoyan  |e verfasserin  |4 aut 
245 1 0 |a Colloid Electrolyte with Changed Li+ Solvation Structure for High-Power, Low-Temperature Lithium-Ion Batteries 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.03.2023 
500 |a Date Revised 23.03.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Lithium-ion batteries currently suffer from low capacity and fast degradation under fast charging and/or low temperatures. In this work, a colloid liquid electrolyte (CLE) is designed, where the trace amount of lithium thiocarbonate (LTC) colloids in commercial carbonate electrolyte (1 m LiPF6 in ethylene carbonate/dimethyl carbonate) not only boosts up σLi+ but also improves the Li+ transfer kinetics at LiNi0.8 Co0.15 Al0.05 O2 (NCA) cathode/electrolyte interface. The competitive coordination of LTCs with anions and solvents facilitates the dissociation of lithium salts and Li+ decoupling, dramatically enhancing the σLi+ (15 to 4.5 mS cm-1 at 30 and -20 °C, respectively); meanwhile, the desolvation process is accelerated. It demonstrates that LTC colloids induce an ≈5 nm ultrathin Li2 CO3 -rich cathode electrolyte interface and infuse the grain boundary of NCA particles, enhancing interfacial Li+ transfer and inhibiting the particle cracks during cycling. Consequently, the Li||CLE||NCA battery delivers a maximum capacity of 135 mAh g-1 at a 10 C rate with 80% retention after 2000 cycles. Moreover, the fast-charging capability under a sub-zero environment is proved (122 mAh g-1 with 90% retention after 400 cycles at 2 C and -10 °C). This strategy for tailoring the interfacial charge transfer appears generalizable and can practically be extended to next-generation energy-storage systems 
650 4 |a Journal Article 
650 4 |a cathode electrolyte interface 
650 4 |a coordination environment 
650 4 |a electrolytes 
650 4 |a fast charging 
650 4 |a lithium-ion batteries 
700 1 |a Yang, Le  |e verfasserin  |4 aut 
700 1 |a Ahmad, Niaz  |e verfasserin  |4 aut 
700 1 |a Ran, Leguan  |e verfasserin  |4 aut 
700 1 |a Shao, Ruiwen  |e verfasserin  |4 aut 
700 1 |a Yang, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 12 vom: 26. März, Seite e2209140  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:12  |g day:26  |g month:03  |g pages:e2209140 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209140  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 12  |b 26  |c 03  |h e2209140