Deep Learning to Analyze Sliding Drops

State-of-the-art contact angle measurements usually involve image analysis of sessile drops. The drops are symmetric and images can be taken at high resolution. The analysis of videos of drops sliding down a tilted plate is hampered due to the low resolution of the cutout area where the drop is visi...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - (2023) vom: 12. Jan.
Auteur principal: Shumaly, Sajjad (Auteur)
Autres auteurs: Darvish, Fahimeh, Li, Xiaomei, Saal, Alexander, Hinduja, Chirag, Steffen, Werner, Kukharenko, Oleksandra, Butt, Hans-Jürgen, Berger, Rüdiger
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM35145229X
003 DE-627
005 20250304073656.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c02847  |2 doi 
028 5 2 |a pubmed25n1171.xml 
035 |a (DE-627)NLM35145229X 
035 |a (NLM)36634270 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shumaly, Sajjad  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning to Analyze Sliding Drops 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a State-of-the-art contact angle measurements usually involve image analysis of sessile drops. The drops are symmetric and images can be taken at high resolution. The analysis of videos of drops sliding down a tilted plate is hampered due to the low resolution of the cutout area where the drop is visible. The challenge is to analyze all video images automatically, while the drops are not symmetric anymore and contact angles change while sliding down the tilted plate. To increase the accuracy of contact angles, we present a 4-segment super-resolution optimized-fitting (4S-SROF) method. We developed a deep learning-based super-resolution model with an upscale ratio of 3; i.e., the trained model is able to enlarge drop images 9 times accurately (PSNR = 36.39). In addition, a systematic experiment using synthetic images was conducted to determine the best parameters for polynomial fitting of contact angles. Our method improved the accuracy by 21% for contact angles lower than 90° and by 33% for contact angles higher than 90° 
650 4 |a Journal Article 
700 1 |a Darvish, Fahimeh  |e verfasserin  |4 aut 
700 1 |a Li, Xiaomei  |e verfasserin  |4 aut 
700 1 |a Saal, Alexander  |e verfasserin  |4 aut 
700 1 |a Hinduja, Chirag  |e verfasserin  |4 aut 
700 1 |a Steffen, Werner  |e verfasserin  |4 aut 
700 1 |a Kukharenko, Oleksandra  |e verfasserin  |4 aut 
700 1 |a Butt, Hans-Jürgen  |e verfasserin  |4 aut 
700 1 |a Berger, Rüdiger  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g (2023) vom: 12. Jan.  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g year:2023  |g day:12  |g month:01 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c02847  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |j 2023  |b 12  |c 01