Interplay of Fluid Mechanics and Matrix Stiffness in Tuning the Mechanical Behaviors of Single Cells Probed by Atomic Force Microscopy

It is well known that both fluid mechanics and matrix stiffness present within the cellular microenvironments play an essential role in the physiological and pathological processes of cells. However, so far, knowledge of the interplay of fluid mechanics and matrix stiffness in tuning the mechanical...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2023) vom: 12. Jan.
1. Verfasser: Wei, Jiajia (VerfasserIn)
Weitere Verfasser: Li, Mi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM351448942
003 DE-627
005 20240216232411.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c03137  |2 doi 
028 5 2 |a pubmed24n1295.xml 
035 |a (DE-627)NLM351448942 
035 |a (NLM)36633932 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Jiajia  |e verfasserin  |4 aut 
245 1 0 |a Interplay of Fluid Mechanics and Matrix Stiffness in Tuning the Mechanical Behaviors of Single Cells Probed by Atomic Force Microscopy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a It is well known that both fluid mechanics and matrix stiffness present within the cellular microenvironments play an essential role in the physiological and pathological processes of cells. However, so far, knowledge of the interplay of fluid mechanics and matrix stiffness in tuning the mechanical behaviors of single cells is still extremely limited. Particularly, atomic force microscopy (AFM) is now an important and standard tool for characterizing the mechanical properties of single living cells. Nevertheless, studies of utilizing AFM to detect cellular mechanics are commonly performed in static medium conditions, which are unable to access the effects of fluidic media on cellular behaviors. Here, by integrating AFM with a fluidic cell medium device and hydrogel technology, the combined effects of fluid mechanics and matrix stiffness on cell mechanics were investigated. A fluidic medium device with tunable fluid mechanics was established to simulate the shear flow effects, and hydrogels were used to fabricate substrates with different stiffnesses for cell growth. Especially, the cantilever of the AFM probe was modified with a microsphere to indent cells for probing cell mechanics. Based on the established experimental platform, the elastic and viscous properties of single living cells grown on substrates with tunable matrix stiffness under fluidic microenvironments were quantitatively measured, and the remarkable alterations in the mechanical properties of cells were unraveled. The subcellular structure changes of cells in fluidic microenvironments were observed by fluorescence microscopy. Further, AFM morphological imaging was used to image living cells grown in fluidic medium conditions, and significant changes in the surface structure and roughness of cells were observed. The study provides a novel way to investigate the synergistic effects of fluid mechanics and matrix stiffness on the behaviors of single cells, which will benefit unveiling the underlying mechanical cues involved the interactions between microenvironments and cells 
650 4 |a Journal Article 
700 1 |a Li, Mi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g (2023) vom: 12. Jan.  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g year:2023  |g day:12  |g month:01 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c03137  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |j 2023  |b 12  |c 01