Survey on sentiment analysis : evolution of research methods and topics

© The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - (2023) vom: 06. Jan., Seite 1-42
1. Verfasser: Cui, Jingfeng (VerfasserIn)
Weitere Verfasser: Wang, Zhaoxia, Ho, Seng-Beng, Cambria, Erik
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Evolution analysis Keyword co-occurrence analysis Research methods Research topics Sentiment analysis
LEADER 01000caa a22002652 4500
001 NLM351393420
003 DE-627
005 20240216232408.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-022-10386-z  |2 doi 
028 5 2 |a pubmed24n1295.xml 
035 |a (DE-627)NLM351393420 
035 |a (NLM)36628328 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cui, Jingfeng  |e verfasserin  |4 aut 
245 1 0 |a Survey on sentiment analysis  |b evolution of research methods and topics 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates keyword co-occurrence analysis with a community detection algorithm. This survey not only compares and analyzes the connections between research methods and topics over the past two decades but also uncovers the hotspots and trends over time, thus providing guidance for researchers. Furthermore, this paper presents broad practical insights into the methods and topics of sentiment analysis, while also identifying technical directions, limitations, and future work 
650 4 |a Journal Article 
650 4 |a Evolution analysis 
650 4 |a Keyword co-occurrence analysis 
650 4 |a Research methods 
650 4 |a Research topics 
650 4 |a Sentiment analysis 
700 1 |a Wang, Zhaoxia  |e verfasserin  |4 aut 
700 1 |a Ho, Seng-Beng  |e verfasserin  |4 aut 
700 1 |a Cambria, Erik  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g (2023) vom: 06. Jan., Seite 1-42  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnns 
773 1 8 |g year:2023  |g day:06  |g month:01  |g pages:1-42 
856 4 0 |u http://dx.doi.org/10.1007/s10462-022-10386-z  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 06  |c 01  |h 1-42