Screening of Alkali Metal-Exchanged Zeolites for Nitrogen/Methane Separation
Methane (CH4) is the primary component of natural gas and must be purified to a certain level before it can be used as pipeline gas or liquified natural gas (LNG). In particular, nitrogen (N2), a common contaminant in natural gas needs to be rejected to increase the heating value of the gas and meet...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2023) vom: 10. Jan. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Methane (CH4) is the primary component of natural gas and must be purified to a certain level before it can be used as pipeline gas or liquified natural gas (LNG). In particular, nitrogen (N2), a common contaminant in natural gas needs to be rejected to increase the heating value of the gas and meet the LNG product specifications. The development of energy-efficient N2 removal technologies is hampered by N2's inertness and its resemblance to CH4 in terms of kinetic size and polarizability. N2-selective materials are so rare. Here, for the first time, we screened 1425 alkali metal cation exchange zeolites to identify the candidates with the best potential for the separation of N2 from CH4. We discovered a few extraordinary zeolite frameworks capable of achieving equilibrium selectivity toward N2. Particularly, Li+-RRO-3 zeolite with a specific two-dimensional structure demonstrated a selective N2 adsorption capacity of 2.94 mmol/g at 283 K and 1 bar, outperforming the capacity of all known zeolites. Through an ab initio density functional theory study, we found that the five-membered ring of the RRO framework is the most stable cationic site for Li+, and this Li+ can interact with multiple N2 molecules but only one CH4, revealing the mechanism for the high capacity and selectivity of N2. This work suggests promising adsorbents to enable N2 rejection from CH4 in the gas industry without going for energy-intensive cryogenic distillations |
---|---|
Beschreibung: | Date Revised 16.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c03089 |